V. Trivedi, J. John, J. Young, T. Dao, D. Morgan, I. To, R. Ma, D. Hammock, S. Mehrotra, L. Radic, B. Grote, T. Roggenbauer, J. Kirchgessner
{"title":"90nm BiCMOS技术,400GHz fMAX SiGe:C HBT","authors":"V. Trivedi, J. John, J. Young, T. Dao, D. Morgan, I. To, R. Ma, D. Hammock, S. Mehrotra, L. Radic, B. Grote, T. Roggenbauer, J. Kirchgessner","doi":"10.1109/BCTM.2016.7738951","DOIUrl":null,"url":null,"abstract":"A 90nm BiCMOS technology with a SiGe:C HBT having fMAX >400GHz is presented. Both lateral and vertical scaling of the SiGe bipolar transistor are described, enabling SiGe HBT performance metrics fT/fMAX of ~230GHz/400GHz to be achieved with a minimum gate delay of <;3ps. A medium breakdown device is also integrated, achieving an fT*BVCEO product of 310GHz*V. CMOS implant and HBT process optimizations to address the additional thermal budget of the HBT module are also discussed. In concert with high-quality passives, this technology is especially suited for millimeter wave applications with high digital gate density requirements.","PeriodicalId":431327,"journal":{"name":"2016 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A 90nm BiCMOS technology featuring 400GHz fMAX SiGe:C HBT\",\"authors\":\"V. Trivedi, J. John, J. Young, T. Dao, D. Morgan, I. To, R. Ma, D. Hammock, S. Mehrotra, L. Radic, B. Grote, T. Roggenbauer, J. Kirchgessner\",\"doi\":\"10.1109/BCTM.2016.7738951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 90nm BiCMOS technology with a SiGe:C HBT having fMAX >400GHz is presented. Both lateral and vertical scaling of the SiGe bipolar transistor are described, enabling SiGe HBT performance metrics fT/fMAX of ~230GHz/400GHz to be achieved with a minimum gate delay of <;3ps. A medium breakdown device is also integrated, achieving an fT*BVCEO product of 310GHz*V. CMOS implant and HBT process optimizations to address the additional thermal budget of the HBT module are also discussed. In concert with high-quality passives, this technology is especially suited for millimeter wave applications with high digital gate density requirements.\",\"PeriodicalId\":431327,\"journal\":{\"name\":\"2016 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCTM.2016.7738951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCTM.2016.7738951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 90nm BiCMOS technology featuring 400GHz fMAX SiGe:C HBT
A 90nm BiCMOS technology with a SiGe:C HBT having fMAX >400GHz is presented. Both lateral and vertical scaling of the SiGe bipolar transistor are described, enabling SiGe HBT performance metrics fT/fMAX of ~230GHz/400GHz to be achieved with a minimum gate delay of <;3ps. A medium breakdown device is also integrated, achieving an fT*BVCEO product of 310GHz*V. CMOS implant and HBT process optimizations to address the additional thermal budget of the HBT module are also discussed. In concert with high-quality passives, this technology is especially suited for millimeter wave applications with high digital gate density requirements.