利用深度学习方法检测玉米灰斑严重程度

Anupam Baliyan, V. Kukreja, Vikas Salonki, K. Kaswan
{"title":"利用深度学习方法检测玉米灰斑严重程度","authors":"Anupam Baliyan, V. Kukreja, Vikas Salonki, K. Kaswan","doi":"10.1109/icrito51393.2021.9596540","DOIUrl":null,"url":null,"abstract":"A simple Convolutional neural network (CNN) based deep learning (DL) model has been proposed for multi-classification of corn gray leaf spot (CGLS) disease based on five different severity levels of CGLS disease on the corn plant. Certain corn leaf diseases like CGLS, common rust, and leaf blight are quite common and dangerous in corn harvest. Hence, the current work presents a solution for CGLS disease detection on corn plants using a multi-classification DL model which gives the best detection accuracy of 95.33% in high-risk severity level image. Along with this comparison of five different severity levels has also been conducted based on resulted performance measures (PM).","PeriodicalId":259978,"journal":{"name":"2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Detection of Corn Gray Leaf Spot Severity Levels using Deep Learning Approach\",\"authors\":\"Anupam Baliyan, V. Kukreja, Vikas Salonki, K. Kaswan\",\"doi\":\"10.1109/icrito51393.2021.9596540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple Convolutional neural network (CNN) based deep learning (DL) model has been proposed for multi-classification of corn gray leaf spot (CGLS) disease based on five different severity levels of CGLS disease on the corn plant. Certain corn leaf diseases like CGLS, common rust, and leaf blight are quite common and dangerous in corn harvest. Hence, the current work presents a solution for CGLS disease detection on corn plants using a multi-classification DL model which gives the best detection accuracy of 95.33% in high-risk severity level image. Along with this comparison of five different severity levels has also been conducted based on resulted performance measures (PM).\",\"PeriodicalId\":259978,\"journal\":{\"name\":\"2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icrito51393.2021.9596540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icrito51393.2021.9596540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于简单卷积神经网络(CNN)的深度学习(DL)模型,根据玉米植株灰斑病的5个不同严重程度,对其进行多重分类。某些玉米叶片病害,如CGLS、普通锈病和叶枯病,在玉米收获中是相当常见和危险的。因此,本文提出了一种基于多分类深度学习模型的玉米植株CGLS病害检测解决方案,该方法在高危严重程度图像中检测准确率最高,达到95.33%。与此同时,还根据结果性能度量(PM)对五个不同的严重级别进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Corn Gray Leaf Spot Severity Levels using Deep Learning Approach
A simple Convolutional neural network (CNN) based deep learning (DL) model has been proposed for multi-classification of corn gray leaf spot (CGLS) disease based on five different severity levels of CGLS disease on the corn plant. Certain corn leaf diseases like CGLS, common rust, and leaf blight are quite common and dangerous in corn harvest. Hence, the current work presents a solution for CGLS disease detection on corn plants using a multi-classification DL model which gives the best detection accuracy of 95.33% in high-risk severity level image. Along with this comparison of five different severity levels has also been conducted based on resulted performance measures (PM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信