基于gpu加速的并行鱼群算法

Yifan Hu, B. Yu, Jianliang Ma, Tianzhou Chen
{"title":"基于gpu加速的并行鱼群算法","authors":"Yifan Hu, B. Yu, Jianliang Ma, Tianzhou Chen","doi":"10.1109/ISA.2011.5873264","DOIUrl":null,"url":null,"abstract":"With the development of Graphics Processing Unit (GPU) and the Compute Unified Device Architecture (CUDA) platform, researchers shift their attentions to general-purpose computing applications with GPU. In this paper, we present a novel parallel approach to run artificial fish swarm algorithm (AFSA) on GPU. Experiments are conducted by running AFSA both on GPU and CPU respectively to optimize four benchmark test functions. With the same optimization performance, the running speed of the AFSA based on GPU (GPU-AFSA) can be as 30 time fast as that of the AFSA based on CPU (CPU-AFSA). As far as we know, this is the first implementation of AFSA on GPU.","PeriodicalId":128163,"journal":{"name":"2011 3rd International Workshop on Intelligent Systems and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Parallel Fish Swarm Algorithm Based on GPU-Acceleration\",\"authors\":\"Yifan Hu, B. Yu, Jianliang Ma, Tianzhou Chen\",\"doi\":\"10.1109/ISA.2011.5873264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of Graphics Processing Unit (GPU) and the Compute Unified Device Architecture (CUDA) platform, researchers shift their attentions to general-purpose computing applications with GPU. In this paper, we present a novel parallel approach to run artificial fish swarm algorithm (AFSA) on GPU. Experiments are conducted by running AFSA both on GPU and CPU respectively to optimize four benchmark test functions. With the same optimization performance, the running speed of the AFSA based on GPU (GPU-AFSA) can be as 30 time fast as that of the AFSA based on CPU (CPU-AFSA). As far as we know, this is the first implementation of AFSA on GPU.\",\"PeriodicalId\":128163,\"journal\":{\"name\":\"2011 3rd International Workshop on Intelligent Systems and Applications\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 3rd International Workshop on Intelligent Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISA.2011.5873264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISA.2011.5873264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

随着图形处理单元(Graphics Processing Unit, GPU)和计算统一设备架构(Compute Unified Device Architecture, CUDA)平台的发展,研究人员将注意力转向了基于GPU的通用计算应用。提出了一种在GPU上并行运行人工鱼群算法(AFSA)的新方法。分别在GPU和CPU上运行AFSA对四个基准测试函数进行了优化实验。在相同的优化性能下,基于GPU的AFSA (GPU-AFSA)的运行速度可以比基于CPU的AFSA (CPU-AFSA)快30倍。据我们所知,这是AFSA在GPU上的首次实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Fish Swarm Algorithm Based on GPU-Acceleration
With the development of Graphics Processing Unit (GPU) and the Compute Unified Device Architecture (CUDA) platform, researchers shift their attentions to general-purpose computing applications with GPU. In this paper, we present a novel parallel approach to run artificial fish swarm algorithm (AFSA) on GPU. Experiments are conducted by running AFSA both on GPU and CPU respectively to optimize four benchmark test functions. With the same optimization performance, the running speed of the AFSA based on GPU (GPU-AFSA) can be as 30 time fast as that of the AFSA based on CPU (CPU-AFSA). As far as we know, this is the first implementation of AFSA on GPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信