非平凡几何微结构中气体阻尼的模拟

J. Mehner, S. Kurth, D. Billep, C. Kaufmann, K. Kehr, W. Dotzel
{"title":"非平凡几何微结构中气体阻尼的模拟","authors":"J. Mehner, S. Kurth, D. Billep, C. Kaufmann, K. Kehr, W. Dotzel","doi":"10.1109/MEMSYS.1998.659749","DOIUrl":null,"url":null,"abstract":"Methods to calculate the fluid depending forces in movable micromechanical structures will be shown in this paper. In most cases fluid flow within narrow air gaps can be simply described by the Reynolds gas film equation. Analytical solutions are known for simple plate shapes. New ways to describe the damping and squeeze film effect for nontrivial plate shapes using analogy relations are discussed. Reynolds equation fails in the case of large air gaps between plates or if free outstream conditions are not valid. In these cases the general Navier-Stokes-Equation must be used. FE-tools with fluidmechanical capabilities are able to solve this partial differential equation and allow a damping analysis. Phase shift between plates velocity and reaction forces can be interpreted as additional inertial or squeeze forces. Results of simulation and experimental analysis are verified on a gyroscope and a micromirror array.","PeriodicalId":340972,"journal":{"name":"Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Simulation of gas damping in microstructures with nontrivial geometries\",\"authors\":\"J. Mehner, S. Kurth, D. Billep, C. Kaufmann, K. Kehr, W. Dotzel\",\"doi\":\"10.1109/MEMSYS.1998.659749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methods to calculate the fluid depending forces in movable micromechanical structures will be shown in this paper. In most cases fluid flow within narrow air gaps can be simply described by the Reynolds gas film equation. Analytical solutions are known for simple plate shapes. New ways to describe the damping and squeeze film effect for nontrivial plate shapes using analogy relations are discussed. Reynolds equation fails in the case of large air gaps between plates or if free outstream conditions are not valid. In these cases the general Navier-Stokes-Equation must be used. FE-tools with fluidmechanical capabilities are able to solve this partial differential equation and allow a damping analysis. Phase shift between plates velocity and reaction forces can be interpreted as additional inertial or squeeze forces. Results of simulation and experimental analysis are verified on a gyroscope and a micromirror array.\",\"PeriodicalId\":340972,\"journal\":{\"name\":\"Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.1998.659749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.1998.659749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

本文将介绍可移动微机械结构中流体依赖力的计算方法。在大多数情况下,流体在狭窄气隙内的流动可以用雷诺气膜方程简单地描述。解析解以简单的板形而闻名。讨论了用类比关系描述非平凡板形的阻尼和挤压膜效应的新方法。雷诺方程在板间气隙较大或自由流出条件不成立的情况下失效。在这些情况下,必须使用一般的navier - stokes方程。具有流体力学能力的fe工具能够求解该偏微分方程并允许进行阻尼分析。板之间的相移速度和反作用力可以解释为额外的惯性或挤压力。在陀螺仪和微镜阵列上验证了仿真和实验分析的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of gas damping in microstructures with nontrivial geometries
Methods to calculate the fluid depending forces in movable micromechanical structures will be shown in this paper. In most cases fluid flow within narrow air gaps can be simply described by the Reynolds gas film equation. Analytical solutions are known for simple plate shapes. New ways to describe the damping and squeeze film effect for nontrivial plate shapes using analogy relations are discussed. Reynolds equation fails in the case of large air gaps between plates or if free outstream conditions are not valid. In these cases the general Navier-Stokes-Equation must be used. FE-tools with fluidmechanical capabilities are able to solve this partial differential equation and allow a damping analysis. Phase shift between plates velocity and reaction forces can be interpreted as additional inertial or squeeze forces. Results of simulation and experimental analysis are verified on a gyroscope and a micromirror array.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信