基于SRAM访问优化的可重构处理单元阵列1.93TOPS/W深度学习处理器

Liao-Chuan Chen, Zhaofang Li, Yi-Jhen Lin, Kuang Lee, K. Tang
{"title":"基于SRAM访问优化的可重构处理单元阵列1.93TOPS/W深度学习处理器","authors":"Liao-Chuan Chen, Zhaofang Li, Yi-Jhen Lin, Kuang Lee, K. Tang","doi":"10.1109/APCCAS55924.2022.10090334","DOIUrl":null,"url":null,"abstract":"Deep convolutional neural networks feature numerous parameters, causing data movement to usually dominate the power consumed when computing inferences. This paper proposes an on-chip buffer access optimization method and high-data-reuse architecture that can reduce the power consumed by an on-chip buffer by up to 67.8%. The chip is designed in a TSMC 40 nm process running at 200 MHz and achieves energy efficiency of 1.93 TOPS/W.","PeriodicalId":243739,"journal":{"name":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"2002 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 1.93TOPS/W Deep Learning Processor with a Reconfigurable Processing Element Array Based on SRAM Access Optimization\",\"authors\":\"Liao-Chuan Chen, Zhaofang Li, Yi-Jhen Lin, Kuang Lee, K. Tang\",\"doi\":\"10.1109/APCCAS55924.2022.10090334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep convolutional neural networks feature numerous parameters, causing data movement to usually dominate the power consumed when computing inferences. This paper proposes an on-chip buffer access optimization method and high-data-reuse architecture that can reduce the power consumed by an on-chip buffer by up to 67.8%. The chip is designed in a TSMC 40 nm process running at 200 MHz and achieves energy efficiency of 1.93 TOPS/W.\",\"PeriodicalId\":243739,\"journal\":{\"name\":\"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"volume\":\"2002 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS55924.2022.10090334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS55924.2022.10090334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度卷积神经网络具有众多参数,导致数据移动通常在计算推理时占据主导地位。本文提出了一种片上缓冲器访问优化方法和高数据重用架构,可将片上缓冲器功耗降低67.8%。该芯片采用台积电40纳米工艺设计,运行频率为200 MHz,能量效率为1.93 TOPS/W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 1.93TOPS/W Deep Learning Processor with a Reconfigurable Processing Element Array Based on SRAM Access Optimization
Deep convolutional neural networks feature numerous parameters, causing data movement to usually dominate the power consumed when computing inferences. This paper proposes an on-chip buffer access optimization method and high-data-reuse architecture that can reduce the power consumed by an on-chip buffer by up to 67.8%. The chip is designed in a TSMC 40 nm process running at 200 MHz and achieves energy efficiency of 1.93 TOPS/W.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信