多面体不确定性系统鲁棒SPR的多项式滤波器计算注记

G. Bianchini
{"title":"多面体不确定性系统鲁棒SPR的多项式滤波器计算注记","authors":"G. Bianchini","doi":"10.1109/CDC.2003.1272425","DOIUrl":null,"url":null,"abstract":"This paper addresses the robust strict positive realness (RSPR) problem when the uncertain polynomial family is defined by an l/sub /spl infin// ball in coefficient space. A new characterization of the filters solving such problem is proposed. This characterization is exploited numerically to devise polynomial filters with guaranteed l/sub /spl infin// robustness margin.","PeriodicalId":371853,"journal":{"name":"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on computing polynomial filters for robust SPR of systems with polyhedral uncertainty\",\"authors\":\"G. Bianchini\",\"doi\":\"10.1109/CDC.2003.1272425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the robust strict positive realness (RSPR) problem when the uncertain polynomial family is defined by an l/sub /spl infin// ball in coefficient space. A new characterization of the filters solving such problem is proposed. This characterization is exploited numerically to devise polynomial filters with guaranteed l/sub /spl infin// robustness margin.\",\"PeriodicalId\":371853,\"journal\":{\"name\":\"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2003.1272425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2003.1272425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在系数空间中用l/sub /spl中//球定义不确定多项式族时的鲁棒严格正真性问题。提出了解决这一问题的滤波器的一种新的表征。利用这一特性在数值上设计具有保证l/sub /spl /稳健性裕度的多项式滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on computing polynomial filters for robust SPR of systems with polyhedral uncertainty
This paper addresses the robust strict positive realness (RSPR) problem when the uncertain polynomial family is defined by an l/sub /spl infin// ball in coefficient space. A new characterization of the filters solving such problem is proposed. This characterization is exploited numerically to devise polynomial filters with guaranteed l/sub /spl infin// robustness margin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信