R. Boumchedda, J. Noel, B. Giraud, A. Makosiej, M. Rios, E. Esmanhotto, Emilien Bourde-Cicé, Mathis Bellet, D. Turgis, E. Beigné
{"title":"高效节能的4T SRAM Bitcell,具有2T读取端口,适用于28纳米3D单片CoolCube™技术的超低电压操作","authors":"R. Boumchedda, J. Noel, B. Giraud, A. Makosiej, M. Rios, E. Esmanhotto, Emilien Bourde-Cicé, Mathis Bellet, D. Turgis, E. Beigné","doi":"10.1145/3232195.3232210","DOIUrl":null,"url":null,"abstract":"This paper presents a 4T-based SRAM bitcell optimized both for write and read operations at ultra-low voltage (ULV). The proposed bitcell is designed to respond to the requirements of energy constrained systems, as in the case of most IoT-oriented circuits and applications. The use of 3D CoolCube™ technology enables the design of a stable 4T SRAM bitcell by using data-dependent back biasing. The proposed bitcell architecture provides a major reduction of the write operation energy consumption compared to a conventional 6T bitcell. A dedicated read port coupled to a virtual GND (VGND) ensures a full functionality at ULV of read operations. Simulation results show reliable operations down to 0.35 V close to six sigma (6 σ) without any assist techniques (e.g. negative bitlines), achieving in worst case corner 300 ns and 125 ns in write and read access time, respectively. A 6x energy consumption reduction compared to a ULV ultra-low-leakage (ULL) 6T bitcell is demonstrated.","PeriodicalId":401010,"journal":{"name":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy-Efficient 4T SRAM Bitcell with 2T Read-Port for Ultra-Low-Voltage Operations in 28 nm 3D Monolithic CoolCube™ Technology\",\"authors\":\"R. Boumchedda, J. Noel, B. Giraud, A. Makosiej, M. Rios, E. Esmanhotto, Emilien Bourde-Cicé, Mathis Bellet, D. Turgis, E. Beigné\",\"doi\":\"10.1145/3232195.3232210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a 4T-based SRAM bitcell optimized both for write and read operations at ultra-low voltage (ULV). The proposed bitcell is designed to respond to the requirements of energy constrained systems, as in the case of most IoT-oriented circuits and applications. The use of 3D CoolCube™ technology enables the design of a stable 4T SRAM bitcell by using data-dependent back biasing. The proposed bitcell architecture provides a major reduction of the write operation energy consumption compared to a conventional 6T bitcell. A dedicated read port coupled to a virtual GND (VGND) ensures a full functionality at ULV of read operations. Simulation results show reliable operations down to 0.35 V close to six sigma (6 σ) without any assist techniques (e.g. negative bitlines), achieving in worst case corner 300 ns and 125 ns in write and read access time, respectively. A 6x energy consumption reduction compared to a ULV ultra-low-leakage (ULL) 6T bitcell is demonstrated.\",\"PeriodicalId\":401010,\"journal\":{\"name\":\"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3232195.3232210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3232195.3232210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-Efficient 4T SRAM Bitcell with 2T Read-Port for Ultra-Low-Voltage Operations in 28 nm 3D Monolithic CoolCube™ Technology
This paper presents a 4T-based SRAM bitcell optimized both for write and read operations at ultra-low voltage (ULV). The proposed bitcell is designed to respond to the requirements of energy constrained systems, as in the case of most IoT-oriented circuits and applications. The use of 3D CoolCube™ technology enables the design of a stable 4T SRAM bitcell by using data-dependent back biasing. The proposed bitcell architecture provides a major reduction of the write operation energy consumption compared to a conventional 6T bitcell. A dedicated read port coupled to a virtual GND (VGND) ensures a full functionality at ULV of read operations. Simulation results show reliable operations down to 0.35 V close to six sigma (6 σ) without any assist techniques (e.g. negative bitlines), achieving in worst case corner 300 ns and 125 ns in write and read access time, respectively. A 6x energy consumption reduction compared to a ULV ultra-low-leakage (ULL) 6T bitcell is demonstrated.