Naci Pekcokguler, M. Maman, A. Burg, C. Dehollain, D. Morche
{"title":"一种用于超低功耗Wi-Fi地理定位系统的新型射频频谱监测架构","authors":"Naci Pekcokguler, M. Maman, A. Burg, C. Dehollain, D. Morche","doi":"10.1109/NEWCAS50681.2021.9462768","DOIUrl":null,"url":null,"abstract":"Wireless radio consumes the highest power in many systems and must be activated wisely to save power especially in battery-powered systems. Hence, gathering insight into the spectrum activity is needed to control the wireless radio. In this work, classic full-band Fast Fourier Transform (FFT) and sequential digital spectrum scanning systems are presented with their high energy consumption and latency drawbacks. A context-aware, multi-layer-duty-cycled, multi-channel, ultra-low-power analog spectrum monitoring architecture is proposed as a solution to the drawbacks of the classic systems with the emphasis on Wi-Fi signal detection for a Basic Service Set Identifier (BSSID)-based geopositioning shipment tracking application. The proposed architecture provides more than 3 order of magnitude power saving in detection compared to the classic sequential spectrum scanning while maintaining the full functionality under vast variety of operating conditions.","PeriodicalId":373745,"journal":{"name":"2021 19th IEEE International New Circuits and Systems Conference (NEWCAS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel RF Spectrum Monitoring Architecture for an Ultra-Low-Power Wi-Fi Geopositioning System\",\"authors\":\"Naci Pekcokguler, M. Maman, A. Burg, C. Dehollain, D. Morche\",\"doi\":\"10.1109/NEWCAS50681.2021.9462768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless radio consumes the highest power in many systems and must be activated wisely to save power especially in battery-powered systems. Hence, gathering insight into the spectrum activity is needed to control the wireless radio. In this work, classic full-band Fast Fourier Transform (FFT) and sequential digital spectrum scanning systems are presented with their high energy consumption and latency drawbacks. A context-aware, multi-layer-duty-cycled, multi-channel, ultra-low-power analog spectrum monitoring architecture is proposed as a solution to the drawbacks of the classic systems with the emphasis on Wi-Fi signal detection for a Basic Service Set Identifier (BSSID)-based geopositioning shipment tracking application. The proposed architecture provides more than 3 order of magnitude power saving in detection compared to the classic sequential spectrum scanning while maintaining the full functionality under vast variety of operating conditions.\",\"PeriodicalId\":373745,\"journal\":{\"name\":\"2021 19th IEEE International New Circuits and Systems Conference (NEWCAS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 19th IEEE International New Circuits and Systems Conference (NEWCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS50681.2021.9462768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 19th IEEE International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS50681.2021.9462768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel RF Spectrum Monitoring Architecture for an Ultra-Low-Power Wi-Fi Geopositioning System
Wireless radio consumes the highest power in many systems and must be activated wisely to save power especially in battery-powered systems. Hence, gathering insight into the spectrum activity is needed to control the wireless radio. In this work, classic full-band Fast Fourier Transform (FFT) and sequential digital spectrum scanning systems are presented with their high energy consumption and latency drawbacks. A context-aware, multi-layer-duty-cycled, multi-channel, ultra-low-power analog spectrum monitoring architecture is proposed as a solution to the drawbacks of the classic systems with the emphasis on Wi-Fi signal detection for a Basic Service Set Identifier (BSSID)-based geopositioning shipment tracking application. The proposed architecture provides more than 3 order of magnitude power saving in detection compared to the classic sequential spectrum scanning while maintaining the full functionality under vast variety of operating conditions.