功能跃迁扩散的费曼-卡克(Feynman Kac)与信用值调整的应用

Eduard Kromer, L. Overbeck, J. Röder
{"title":"功能跃迁扩散的费曼-卡克(Feynman Kac)与信用值调整的应用","authors":"Eduard Kromer, L. Overbeck, J. Röder","doi":"10.2139/ssrn.2500782","DOIUrl":null,"url":null,"abstract":"We provide a proof for the functional Feynman–Kac theorem for jump diffusions with path-dependent coefficients and apply our results to the problem of Credit Value Adjustment (CVA) in a bilateral counterparty risk framework. We derive the corresponding functional CVA-PIDE and extend existing results on CVA to a setting which enables the pricing of path-dependent derivatives.","PeriodicalId":177064,"journal":{"name":"ERN: Other Econometric Modeling: Derivatives (Topic)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Feynman Kac for Functional Jump Diffusions with an Application to Credit Value Adjustment\",\"authors\":\"Eduard Kromer, L. Overbeck, J. Röder\",\"doi\":\"10.2139/ssrn.2500782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a proof for the functional Feynman–Kac theorem for jump diffusions with path-dependent coefficients and apply our results to the problem of Credit Value Adjustment (CVA) in a bilateral counterparty risk framework. We derive the corresponding functional CVA-PIDE and extend existing results on CVA to a setting which enables the pricing of path-dependent derivatives.\",\"PeriodicalId\":177064,\"journal\":{\"name\":\"ERN: Other Econometric Modeling: Derivatives (Topic)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometric Modeling: Derivatives (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2500782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometric Modeling: Derivatives (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2500782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们证明了具有路径依赖系数的跃迁扩散的费曼-卡克函数定理,并将我们的结果应用于双边交易对手风险框架中的信用价值调整(CVA)问题。我们推导出相应的函数 CVA-PIDE,并将现有的 CVA 结果扩展到路径依赖衍生品定价的环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feynman Kac for Functional Jump Diffusions with an Application to Credit Value Adjustment
We provide a proof for the functional Feynman–Kac theorem for jump diffusions with path-dependent coefficients and apply our results to the problem of Credit Value Adjustment (CVA) in a bilateral counterparty risk framework. We derive the corresponding functional CVA-PIDE and extend existing results on CVA to a setting which enables the pricing of path-dependent derivatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信