谷歌地球引擎上Sentinel时间序列图像的土地覆盖制图:河内案例研究

Nam Ba Bui, Anh Phan, Thanh T. N. Nguyen
{"title":"谷歌地球引擎上Sentinel时间序列图像的土地覆盖制图:河内案例研究","authors":"Nam Ba Bui, Anh Phan, Thanh T. N. Nguyen","doi":"10.1109/NICS51282.2020.9335892","DOIUrl":null,"url":null,"abstract":"Over the past decade, satellite image processing is an overwhelming bulk of work. Recently, with rapid development in information technology, Google released Google Earth Engine (GEE), which is a powerful cloud computing platform, to help to improve the performance of geospatial big data archives and processing. In this study, we deployed a machine learning model to evaluate the capability of time series Sentinel imagery (Sentinel 2 A/B and Sentinel 1A) in landcover mapping for Hanoi in 2019. First, we evaluated several traditional machine learning models, as a result, XGBoost classifier stands out as the best model with 86% overall accuracy (OA). As Hanoi is a frequent cloud-covered area, the combination of optical data and radar data helps to improve the quality of the landcover map in 2019. The use of GEE has made it easier and faster through the provided JavaScript API when ensuring high accuracy","PeriodicalId":308944,"journal":{"name":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Land-cover Mapping from Sentinel Time-Series Imagery on the Google Earth Engine: A Case Study for Hanoi\",\"authors\":\"Nam Ba Bui, Anh Phan, Thanh T. N. Nguyen\",\"doi\":\"10.1109/NICS51282.2020.9335892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past decade, satellite image processing is an overwhelming bulk of work. Recently, with rapid development in information technology, Google released Google Earth Engine (GEE), which is a powerful cloud computing platform, to help to improve the performance of geospatial big data archives and processing. In this study, we deployed a machine learning model to evaluate the capability of time series Sentinel imagery (Sentinel 2 A/B and Sentinel 1A) in landcover mapping for Hanoi in 2019. First, we evaluated several traditional machine learning models, as a result, XGBoost classifier stands out as the best model with 86% overall accuracy (OA). As Hanoi is a frequent cloud-covered area, the combination of optical data and radar data helps to improve the quality of the landcover map in 2019. The use of GEE has made it easier and faster through the provided JavaScript API when ensuring high accuracy\",\"PeriodicalId\":308944,\"journal\":{\"name\":\"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS51282.2020.9335892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS51282.2020.9335892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在过去的十年里,卫星图像处理是一项压倒性的工作。近年来,随着信息技术的飞速发展,谷歌发布了谷歌地球引擎(Google Earth Engine, GEE),这是一个强大的云计算平台,有助于提高地理空间大数据存档和处理的性能。在本研究中,我们部署了一个机器学习模型来评估时间序列Sentinel图像(Sentinel 2 a /B和Sentinel 1A)在2019年河内市土地覆盖制图中的能力。首先,我们评估了几种传统的机器学习模型,结果,XGBoost分类器以86%的总体准确率(OA)脱颖而出。由于河内是一个经常被云覆盖的地区,光学数据和雷达数据的结合有助于提高2019年土地覆盖图的质量。在确保高精度的情况下,通过提供的JavaScript API, GEE的使用使其更容易、更快
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Land-cover Mapping from Sentinel Time-Series Imagery on the Google Earth Engine: A Case Study for Hanoi
Over the past decade, satellite image processing is an overwhelming bulk of work. Recently, with rapid development in information technology, Google released Google Earth Engine (GEE), which is a powerful cloud computing platform, to help to improve the performance of geospatial big data archives and processing. In this study, we deployed a machine learning model to evaluate the capability of time series Sentinel imagery (Sentinel 2 A/B and Sentinel 1A) in landcover mapping for Hanoi in 2019. First, we evaluated several traditional machine learning models, as a result, XGBoost classifier stands out as the best model with 86% overall accuracy (OA). As Hanoi is a frequent cloud-covered area, the combination of optical data and radar data helps to improve the quality of the landcover map in 2019. The use of GEE has made it easier and faster through the provided JavaScript API when ensuring high accuracy
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信