光照不足的钢结构环境中钢铆钉检测的新方法

G. Paul, Liyang Liu, Dikai Liu
{"title":"光照不足的钢结构环境中钢铆钉检测的新方法","authors":"G. Paul, Liyang Liu, Dikai Liu","doi":"10.1109/ICARCV.2016.7838630","DOIUrl":null,"url":null,"abstract":"It is becoming increasingly achievable for steel bridge structures, which are normally both inaccessible and hazardous for humans, to be inspected and maintained by autonomous robots. Steel bridges have been traditionally constructed by securing plate members together with rivets. However, rivets present a challenge for robots both in terms of cleaning and surface traversal. This paper presents a novel approach to RGB-D image and point cloud analysis that enables rivets to be rapidly and robustly located using low cost, non-contact sensing devices that can be easily affixed to a robot. The approach performs classification based on: (a) high-intensity blobs in color images, (b) the non-linear perturbations in depth images, and (c) surface normal clusters in 3D point clouds. The predicted rivet locations from the three classifiers are combined using a probabilistic occupancy mapping technique. Experiments are conducted in several different lab and real-world steel bridge environments, where there is no external lighting infrastructure, and the sensors are attached to a mobile platform, i.e. a climbing inspection robot. The location of rivets within 2m of the robot can be robustly located within 10mm of their correct location. The state of voxels can be predicted with above 95% accuracy, in approximately 1 second per frame.","PeriodicalId":128828,"journal":{"name":"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A novel approach to steel rivet detection in poorly illuminated steel structural environments\",\"authors\":\"G. Paul, Liyang Liu, Dikai Liu\",\"doi\":\"10.1109/ICARCV.2016.7838630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is becoming increasingly achievable for steel bridge structures, which are normally both inaccessible and hazardous for humans, to be inspected and maintained by autonomous robots. Steel bridges have been traditionally constructed by securing plate members together with rivets. However, rivets present a challenge for robots both in terms of cleaning and surface traversal. This paper presents a novel approach to RGB-D image and point cloud analysis that enables rivets to be rapidly and robustly located using low cost, non-contact sensing devices that can be easily affixed to a robot. The approach performs classification based on: (a) high-intensity blobs in color images, (b) the non-linear perturbations in depth images, and (c) surface normal clusters in 3D point clouds. The predicted rivet locations from the three classifiers are combined using a probabilistic occupancy mapping technique. Experiments are conducted in several different lab and real-world steel bridge environments, where there is no external lighting infrastructure, and the sensors are attached to a mobile platform, i.e. a climbing inspection robot. The location of rivets within 2m of the robot can be robustly located within 10mm of their correct location. The state of voxels can be predicted with above 95% accuracy, in approximately 1 second per frame.\",\"PeriodicalId\":128828,\"journal\":{\"name\":\"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCV.2016.7838630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2016.7838630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

钢桥结构通常对人类来说既难以接近又危险,由自主机器人进行检查和维护正变得越来越容易实现。传统上,钢桥是用铆钉将板构件固定在一起建造的。然而,铆钉在清洁和表面穿越方面对机器人提出了挑战。本文提出了一种新的RGB-D图像和点云分析方法,该方法可以使用低成本的非接触式传感装置快速可靠地定位铆钉,这种装置可以很容易地附着在机器人上。该方法基于:(a)彩色图像中的高强度斑点,(b)深度图像中的非线性扰动,以及(c) 3D点云中的表面法向簇进行分类。从三个分类器预测铆钉位置结合使用概率占用映射技术。实验在几个不同的实验室和真实的钢桥环境中进行,在没有外部照明基础设施的环境中,传感器连接到一个移动平台,即攀登检测机器人。在机器人2m范围内的铆钉位置可以在其正确位置的10mm范围内进行稳健定位。体素的状态可以以95%以上的准确率预测,大约每帧1秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel approach to steel rivet detection in poorly illuminated steel structural environments
It is becoming increasingly achievable for steel bridge structures, which are normally both inaccessible and hazardous for humans, to be inspected and maintained by autonomous robots. Steel bridges have been traditionally constructed by securing plate members together with rivets. However, rivets present a challenge for robots both in terms of cleaning and surface traversal. This paper presents a novel approach to RGB-D image and point cloud analysis that enables rivets to be rapidly and robustly located using low cost, non-contact sensing devices that can be easily affixed to a robot. The approach performs classification based on: (a) high-intensity blobs in color images, (b) the non-linear perturbations in depth images, and (c) surface normal clusters in 3D point clouds. The predicted rivet locations from the three classifiers are combined using a probabilistic occupancy mapping technique. Experiments are conducted in several different lab and real-world steel bridge environments, where there is no external lighting infrastructure, and the sensors are attached to a mobile platform, i.e. a climbing inspection robot. The location of rivets within 2m of the robot can be robustly located within 10mm of their correct location. The state of voxels can be predicted with above 95% accuracy, in approximately 1 second per frame.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信