一种用于多核系统中最小化拥塞的4.9 mW神经网络任务调度程序

Youchang Kim, Gyeonghoon Kim, Injoon Hong, Donghyun Kim, H. Yoo
{"title":"一种用于多核系统中最小化拥塞的4.9 mW神经网络任务调度程序","authors":"Youchang Kim, Gyeonghoon Kim, Injoon Hong, Donghyun Kim, H. Yoo","doi":"10.1109/ASSCC.2014.7008898","DOIUrl":null,"url":null,"abstract":"A neural network task scheduler (NNTS) is proposed for the congestion-minimized network-on-chip in multi-core systems. The NNTS is composed of a near-optimal task assignment (NOTA) algorithm and a reconfigurable precision neural network accelerator (RP-NNA). The NOTA adopting a neural network is proposed to predict and avoid the network congestion intelligently. And the RP-NNA is implemented to improve the throughput of NOTA with dynamically adjustable precision. In the case that the NNTS is integrated into a NoC-based multi-core SoC for the augmented reality applications, 79.2% prediction accuracy of NoC communication pattern is achieved and the overall latency is reduced by 24.4%. As a result, the RP-NNA consumes only 4.9 mW and improves the energy efficiency of system by 22.7%.","PeriodicalId":161031,"journal":{"name":"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A 4.9 mW neural network task scheduler for congestion-minimized network-on-chip in multi-core systems\",\"authors\":\"Youchang Kim, Gyeonghoon Kim, Injoon Hong, Donghyun Kim, H. Yoo\",\"doi\":\"10.1109/ASSCC.2014.7008898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A neural network task scheduler (NNTS) is proposed for the congestion-minimized network-on-chip in multi-core systems. The NNTS is composed of a near-optimal task assignment (NOTA) algorithm and a reconfigurable precision neural network accelerator (RP-NNA). The NOTA adopting a neural network is proposed to predict and avoid the network congestion intelligently. And the RP-NNA is implemented to improve the throughput of NOTA with dynamically adjustable precision. In the case that the NNTS is integrated into a NoC-based multi-core SoC for the augmented reality applications, 79.2% prediction accuracy of NoC communication pattern is achieved and the overall latency is reduced by 24.4%. As a result, the RP-NNA consumes only 4.9 mW and improves the energy efficiency of system by 22.7%.\",\"PeriodicalId\":161031,\"journal\":{\"name\":\"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASSCC.2014.7008898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Asian Solid-State Circuits Conference (A-SSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2014.7008898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

针对多核系统中最小化拥塞的片上网络问题,提出了一种神经网络任务调度方法。NNTS由近最优任务分配(NOTA)算法和可重构精密神经网络加速器(RP-NNA)组成。提出了一种采用神经网络进行网络拥塞智能预测和避免的NOTA。采用RP-NNA技术提高了NOTA的吞吐量,精度可动态调节。在增强现实应用中,将NNTS集成到基于NoC的多核SoC中,NoC通信模式的预测准确率达到79.2%,总延迟降低24.4%。结果表明,RP-NNA的能耗仅为4.9 mW,系统的能效提高了22.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 4.9 mW neural network task scheduler for congestion-minimized network-on-chip in multi-core systems
A neural network task scheduler (NNTS) is proposed for the congestion-minimized network-on-chip in multi-core systems. The NNTS is composed of a near-optimal task assignment (NOTA) algorithm and a reconfigurable precision neural network accelerator (RP-NNA). The NOTA adopting a neural network is proposed to predict and avoid the network congestion intelligently. And the RP-NNA is implemented to improve the throughput of NOTA with dynamically adjustable precision. In the case that the NNTS is integrated into a NoC-based multi-core SoC for the augmented reality applications, 79.2% prediction accuracy of NoC communication pattern is achieved and the overall latency is reduced by 24.4%. As a result, the RP-NNA consumes only 4.9 mW and improves the energy efficiency of system by 22.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信