基于蚁群嵌入遗传算法的生产调度规则参数整定

T. Chiang, L. Fu
{"title":"基于蚁群嵌入遗传算法的生产调度规则参数整定","authors":"T. Chiang, L. Fu","doi":"10.1109/RAMECH.2004.1438071","DOIUrl":null,"url":null,"abstract":"In this paper, a search algorithm is proposed for parameter tuning of production rules in job shop scheduling problems. This algorithm is developed based on the genetic algorithm, which is the core for exploration in the search space. Then an ant system is incorporated, which directs the genetic algorithm to search in the potential regions by marking potential genes for changing during reproduction. The improvement of search ability is verified by several experiments.","PeriodicalId":252964,"journal":{"name":"IEEE Conference on Robotics, Automation and Mechatronics, 2004.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parameter tuning of production scheduling rules by an ant system-embedded genetic algorithm\",\"authors\":\"T. Chiang, L. Fu\",\"doi\":\"10.1109/RAMECH.2004.1438071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a search algorithm is proposed for parameter tuning of production rules in job shop scheduling problems. This algorithm is developed based on the genetic algorithm, which is the core for exploration in the search space. Then an ant system is incorporated, which directs the genetic algorithm to search in the potential regions by marking potential genes for changing during reproduction. The improvement of search ability is verified by several experiments.\",\"PeriodicalId\":252964,\"journal\":{\"name\":\"IEEE Conference on Robotics, Automation and Mechatronics, 2004.\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference on Robotics, Automation and Mechatronics, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAMECH.2004.1438071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Robotics, Automation and Mechatronics, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMECH.2004.1438071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种用于作业车间调度问题中生产规则参数整定的搜索算法。该算法是在遗传算法的基础上开发的,遗传算法是搜索空间探索的核心。然后加入蚂蚁系统,通过标记繁殖过程中需要改变的潜在基因,指导遗传算法在潜在区域进行搜索。通过实验验证了搜索能力的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter tuning of production scheduling rules by an ant system-embedded genetic algorithm
In this paper, a search algorithm is proposed for parameter tuning of production rules in job shop scheduling problems. This algorithm is developed based on the genetic algorithm, which is the core for exploration in the search space. Then an ant system is incorporated, which directs the genetic algorithm to search in the potential regions by marking potential genes for changing during reproduction. The improvement of search ability is verified by several experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信