{"title":"一种具有异构和可重构网络结构的并行DSP试验台","authors":"S. Tewksbury, K. Devabattini, V. Gandikota","doi":"10.1109/ICISS.1997.630274","DOIUrl":null,"url":null,"abstract":"A testbed for investigation of heterogeneous and reconfigurable data network fabrics supporting a parallel DSP computational accelerator is described. The DSP processors are large-grained processors (Analog Devices SHARC DSPs), with a variety of parallel DSP array architectures possible. The network fabric is intended to be reconfigurable (within a rich but necessarily limited set of structures) to adapt to the needs of a sequence of image processing algorithms being executed (e.g., in a medical image processing environment). The testbed will exploit conventional FPGA components to provide reconfigurable network structures and will exploit commercial high-speed interconnect components emerging for applications such as board-to-board applications. As a computational accelerator, the testbed is intended to be controlled by a host processor, with the host processor cooperating in the definition of the changes in the structure of the network structure as execution of a sequence of image processing algorithms proceeds.","PeriodicalId":357602,"journal":{"name":"1997 Proceedings Second Annual IEEE International Conference on Innovative Systems in Silicon","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A parallel DSP testbed with a heterogeneous and reconfigurable network fabric\",\"authors\":\"S. Tewksbury, K. Devabattini, V. Gandikota\",\"doi\":\"10.1109/ICISS.1997.630274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A testbed for investigation of heterogeneous and reconfigurable data network fabrics supporting a parallel DSP computational accelerator is described. The DSP processors are large-grained processors (Analog Devices SHARC DSPs), with a variety of parallel DSP array architectures possible. The network fabric is intended to be reconfigurable (within a rich but necessarily limited set of structures) to adapt to the needs of a sequence of image processing algorithms being executed (e.g., in a medical image processing environment). The testbed will exploit conventional FPGA components to provide reconfigurable network structures and will exploit commercial high-speed interconnect components emerging for applications such as board-to-board applications. As a computational accelerator, the testbed is intended to be controlled by a host processor, with the host processor cooperating in the definition of the changes in the structure of the network structure as execution of a sequence of image processing algorithms proceeds.\",\"PeriodicalId\":357602,\"journal\":{\"name\":\"1997 Proceedings Second Annual IEEE International Conference on Innovative Systems in Silicon\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1997 Proceedings Second Annual IEEE International Conference on Innovative Systems in Silicon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISS.1997.630274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1997 Proceedings Second Annual IEEE International Conference on Innovative Systems in Silicon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISS.1997.630274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A parallel DSP testbed with a heterogeneous and reconfigurable network fabric
A testbed for investigation of heterogeneous and reconfigurable data network fabrics supporting a parallel DSP computational accelerator is described. The DSP processors are large-grained processors (Analog Devices SHARC DSPs), with a variety of parallel DSP array architectures possible. The network fabric is intended to be reconfigurable (within a rich but necessarily limited set of structures) to adapt to the needs of a sequence of image processing algorithms being executed (e.g., in a medical image processing environment). The testbed will exploit conventional FPGA components to provide reconfigurable network structures and will exploit commercial high-speed interconnect components emerging for applications such as board-to-board applications. As a computational accelerator, the testbed is intended to be controlled by a host processor, with the host processor cooperating in the definition of the changes in the structure of the network structure as execution of a sequence of image processing algorithms proceeds.