{"title":"有机微腔发光二极管的非对称布拉格反射镜设计","authors":"A. Djurišić, A. Rakić, M. L. Majewski","doi":"10.1109/COMMAD.2002.1237259","DOIUrl":null,"url":null,"abstract":"In this work, we present genetic algorithm based approach for the design of asymmetric Bragg mirrors for the microcavity organic light emitting diodes (OLEDs) applications. The phase shift of the Bragg mirror is calculated using the matrix formulation for light propagation through a thin film multilayer. The objective function to be minimized is the wavelength shift in Ag/Alq/sub 3//TPD/ITO/Bragg mirror/glass device, where ITO is indium tin oxide, AIq/sub 3/ is tris (8-hydroxyquinoline) aluminum, and TPD is N,N'-disphenyl-N,N'-bis(3-methylphenyl)-1,1'-disphenyl-4,4'-diamine, which are commonly used emitting and hole transport materials. We have considered TiO/sub 2//SiO/sub 2/ and Si/sub 3/N/sub 4//SiO/sub 2/ Bragg mirrors, where thickness of each layer in the mirror is determined by minimizing the emission wavelength shift using a genetic algorithm. Simulation results show that the use of asymmetric Bragg mirrors may enable reduction of the emission wavelength shift in organic microcavity devices.","PeriodicalId":129668,"journal":{"name":"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Asymmetric Bragg mirror design for organic microcavity light emitting diodes\",\"authors\":\"A. Djurišić, A. Rakić, M. L. Majewski\",\"doi\":\"10.1109/COMMAD.2002.1237259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present genetic algorithm based approach for the design of asymmetric Bragg mirrors for the microcavity organic light emitting diodes (OLEDs) applications. The phase shift of the Bragg mirror is calculated using the matrix formulation for light propagation through a thin film multilayer. The objective function to be minimized is the wavelength shift in Ag/Alq/sub 3//TPD/ITO/Bragg mirror/glass device, where ITO is indium tin oxide, AIq/sub 3/ is tris (8-hydroxyquinoline) aluminum, and TPD is N,N'-disphenyl-N,N'-bis(3-methylphenyl)-1,1'-disphenyl-4,4'-diamine, which are commonly used emitting and hole transport materials. We have considered TiO/sub 2//SiO/sub 2/ and Si/sub 3/N/sub 4//SiO/sub 2/ Bragg mirrors, where thickness of each layer in the mirror is determined by minimizing the emission wavelength shift using a genetic algorithm. Simulation results show that the use of asymmetric Bragg mirrors may enable reduction of the emission wavelength shift in organic microcavity devices.\",\"PeriodicalId\":129668,\"journal\":{\"name\":\"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMMAD.2002.1237259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMMAD.2002.1237259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Asymmetric Bragg mirror design for organic microcavity light emitting diodes
In this work, we present genetic algorithm based approach for the design of asymmetric Bragg mirrors for the microcavity organic light emitting diodes (OLEDs) applications. The phase shift of the Bragg mirror is calculated using the matrix formulation for light propagation through a thin film multilayer. The objective function to be minimized is the wavelength shift in Ag/Alq/sub 3//TPD/ITO/Bragg mirror/glass device, where ITO is indium tin oxide, AIq/sub 3/ is tris (8-hydroxyquinoline) aluminum, and TPD is N,N'-disphenyl-N,N'-bis(3-methylphenyl)-1,1'-disphenyl-4,4'-diamine, which are commonly used emitting and hole transport materials. We have considered TiO/sub 2//SiO/sub 2/ and Si/sub 3/N/sub 4//SiO/sub 2/ Bragg mirrors, where thickness of each layer in the mirror is determined by minimizing the emission wavelength shift using a genetic algorithm. Simulation results show that the use of asymmetric Bragg mirrors may enable reduction of the emission wavelength shift in organic microcavity devices.