考虑摄像机方向变化的无人机自定位

T. Zielińska, Tomasz Pogorzelski
{"title":"考虑摄像机方向变化的无人机自定位","authors":"T. Zielińska, Tomasz Pogorzelski","doi":"10.14313/par_246/53","DOIUrl":null,"url":null,"abstract":"This publication proposes a visual localization method using images from a simulated camera and a georeferenced map. The UAV model and flight simulation were made in the MATLAB Simulink package, which sent UAV orientation data to the described program. The visualization of the camera image was performed in real time using the FlightGear software, the image of which was also captured by the NW program. This method is performed by two processes in two modules: Global Positioning Component and Motion Positioning Component. The first one compares the image from the simulated camera with the orthophotomap. The second determines the position based on the assessment of the displacement of characteristic points in the image in relation to the last known location. The result of the operation of both modules is illustrated in the graphic window of the NW application, which allows for a visual comparison of the obtained results. With the global method of location, additional camera orientation correction is required to determine the position in 2D space. For this purpose, data on the current camera orientation expressed in quaternions were used. This allowed for the introduction of a position correction, which significantly improved the accuracy of the result obtained in the GPC module despite significant UAV tilts during the simulated flight.","PeriodicalId":383231,"journal":{"name":"Pomiary Automatyka Robotyka","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self-Localization of the Unmanned Aerial Vehicle Taking Into Account the Variable Orientation of the Camera\",\"authors\":\"T. Zielińska, Tomasz Pogorzelski\",\"doi\":\"10.14313/par_246/53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This publication proposes a visual localization method using images from a simulated camera and a georeferenced map. The UAV model and flight simulation were made in the MATLAB Simulink package, which sent UAV orientation data to the described program. The visualization of the camera image was performed in real time using the FlightGear software, the image of which was also captured by the NW program. This method is performed by two processes in two modules: Global Positioning Component and Motion Positioning Component. The first one compares the image from the simulated camera with the orthophotomap. The second determines the position based on the assessment of the displacement of characteristic points in the image in relation to the last known location. The result of the operation of both modules is illustrated in the graphic window of the NW application, which allows for a visual comparison of the obtained results. With the global method of location, additional camera orientation correction is required to determine the position in 2D space. For this purpose, data on the current camera orientation expressed in quaternions were used. This allowed for the introduction of a position correction, which significantly improved the accuracy of the result obtained in the GPC module despite significant UAV tilts during the simulated flight.\",\"PeriodicalId\":383231,\"journal\":{\"name\":\"Pomiary Automatyka Robotyka\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pomiary Automatyka Robotyka\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14313/par_246/53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pomiary Automatyka Robotyka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14313/par_246/53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本出版物提出了一种视觉定位方法,使用来自模拟相机和地理参考地图的图像。在MATLAB Simulink软件包中对无人机进行建模和飞行仿真,并将无人机定位数据发送到所述程序中。使用FlightGear软件对相机图像进行实时可视化,该图像也由NW程序捕获。该方法分为两个模块:全局定位组件和运动定位组件。第一个是将模拟相机的图像与正射影图进行比较。第二种方法基于图像中特征点相对于最后已知位置的位移的评估来确定位置。两个模块的操作结果在NW应用程序的图形窗口中显示,这允许对获得的结果进行可视化比较。使用全局定位方法,需要额外的相机方向校正来确定在二维空间中的位置。为此,使用了以四元数表示的关于当前摄像机方向的数据。这允许引入位置校正,这显着提高了在GPC模块中获得的结果的精度,尽管在模拟飞行期间显著的UAV倾斜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Localization of the Unmanned Aerial Vehicle Taking Into Account the Variable Orientation of the Camera
This publication proposes a visual localization method using images from a simulated camera and a georeferenced map. The UAV model and flight simulation were made in the MATLAB Simulink package, which sent UAV orientation data to the described program. The visualization of the camera image was performed in real time using the FlightGear software, the image of which was also captured by the NW program. This method is performed by two processes in two modules: Global Positioning Component and Motion Positioning Component. The first one compares the image from the simulated camera with the orthophotomap. The second determines the position based on the assessment of the displacement of characteristic points in the image in relation to the last known location. The result of the operation of both modules is illustrated in the graphic window of the NW application, which allows for a visual comparison of the obtained results. With the global method of location, additional camera orientation correction is required to determine the position in 2D space. For this purpose, data on the current camera orientation expressed in quaternions were used. This allowed for the introduction of a position correction, which significantly improved the accuracy of the result obtained in the GPC module despite significant UAV tilts during the simulated flight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信