测量分析师报告中的信息:一种机器学习方法

Charles Martineau, M. Zoican
{"title":"测量分析师报告中的信息:一种机器学习方法","authors":"Charles Martineau, M. Zoican","doi":"10.2139/ssrn.3925176","DOIUrl":null,"url":null,"abstract":"How to quantify the informational content of analyst reports? In this short methodological paper, we propose a measure of information contribution (IC), defined in the spirit of Shapley values. We use natural language processing to identify topics for over 90,000 analyst reports for S&P 500 stocks between January 2018 to May 2020. Next, we build the IC measure as the average cosine distance between the topic distribution for a particular report and any subset of competitor reports. A first preliminary finding is that the informational content of reports in \"crowded stocks\" is 41% lower than for reports in low-coverage stocks. Second, team-authored reports are 36% more informative than individual reports and women-authored reports are 12% more informative than men-authored reports.","PeriodicalId":202880,"journal":{"name":"Research Methods & Methodology in Accounting eJournal","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring information in analyst reports: A machine learning approach\",\"authors\":\"Charles Martineau, M. Zoican\",\"doi\":\"10.2139/ssrn.3925176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How to quantify the informational content of analyst reports? In this short methodological paper, we propose a measure of information contribution (IC), defined in the spirit of Shapley values. We use natural language processing to identify topics for over 90,000 analyst reports for S&P 500 stocks between January 2018 to May 2020. Next, we build the IC measure as the average cosine distance between the topic distribution for a particular report and any subset of competitor reports. A first preliminary finding is that the informational content of reports in \\\"crowded stocks\\\" is 41% lower than for reports in low-coverage stocks. Second, team-authored reports are 36% more informative than individual reports and women-authored reports are 12% more informative than men-authored reports.\",\"PeriodicalId\":202880,\"journal\":{\"name\":\"Research Methods & Methodology in Accounting eJournal\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Methods & Methodology in Accounting eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3925176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Methods & Methodology in Accounting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3925176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如何量化分析报告的信息内容?在这篇简短的方法论论文中,我们提出了一种衡量信息贡献(IC)的方法,该方法是按照Shapley价值观的精神来定义的。我们使用自然语言处理来确定2018年1月至2020年5月期间标准普尔500指数股票的9万多份分析师报告的主题。接下来,我们将IC度量构建为特定报告的主题分布与竞争对手报告的任何子集之间的平均余弦距离。第一个初步发现是,“密集库存”报告的信息内容比低覆盖率库存报告的信息内容低41%。其次,团队撰写的报告比个人撰写的报告信息量大36%,女性撰写的报告信息量比男性撰写的报告信息量大12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring information in analyst reports: A machine learning approach
How to quantify the informational content of analyst reports? In this short methodological paper, we propose a measure of information contribution (IC), defined in the spirit of Shapley values. We use natural language processing to identify topics for over 90,000 analyst reports for S&P 500 stocks between January 2018 to May 2020. Next, we build the IC measure as the average cosine distance between the topic distribution for a particular report and any subset of competitor reports. A first preliminary finding is that the informational content of reports in "crowded stocks" is 41% lower than for reports in low-coverage stocks. Second, team-authored reports are 36% more informative than individual reports and women-authored reports are 12% more informative than men-authored reports.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信