S. Lancaster, Q. Duong, E. Covi, T. Mikolajick, S. Slesazeck
{"title":"面向大规模并行神经形态计算的功函数工程改进FTJ导通电流","authors":"S. Lancaster, Q. Duong, E. Covi, T. Mikolajick, S. Slesazeck","doi":"10.1109/ESSCIRC55480.2022.9911392","DOIUrl":null,"url":null,"abstract":"HfO2-based ferroelectric tunnel junctions (FTJs) exhibit attractive properties for adoption in neuromorphic applications. The combination of ultra-low-power multi-level switching capability together with the low on-current density suggests the application in circuits for massive parallel computation. In this work, we discuss one example circuit of a differential synaptic cell featuring multiple parallel connected FTJ devices. Moreover, from the circuit requirements we deduce that the absolute difference in currents $I_{on}-\\mathrm{I}_{off}$ is a more critical figure of merit than the tunneling electroresistance ratio (TER). Based on this, we discuss the potential of FTJ device optimization by means of electrode work function engineering in bilayer HZO/Al2O3FTJs.","PeriodicalId":168466,"journal":{"name":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improvement of FTJ on-current by work function engineering for massive parallel neuromorphic computing\",\"authors\":\"S. Lancaster, Q. Duong, E. Covi, T. Mikolajick, S. Slesazeck\",\"doi\":\"10.1109/ESSCIRC55480.2022.9911392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"HfO2-based ferroelectric tunnel junctions (FTJs) exhibit attractive properties for adoption in neuromorphic applications. The combination of ultra-low-power multi-level switching capability together with the low on-current density suggests the application in circuits for massive parallel computation. In this work, we discuss one example circuit of a differential synaptic cell featuring multiple parallel connected FTJ devices. Moreover, from the circuit requirements we deduce that the absolute difference in currents $I_{on}-\\\\mathrm{I}_{off}$ is a more critical figure of merit than the tunneling electroresistance ratio (TER). Based on this, we discuss the potential of FTJ device optimization by means of electrode work function engineering in bilayer HZO/Al2O3FTJs.\",\"PeriodicalId\":168466,\"journal\":{\"name\":\"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC55480.2022.9911392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2022- IEEE 48th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC55480.2022.9911392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improvement of FTJ on-current by work function engineering for massive parallel neuromorphic computing
HfO2-based ferroelectric tunnel junctions (FTJs) exhibit attractive properties for adoption in neuromorphic applications. The combination of ultra-low-power multi-level switching capability together with the low on-current density suggests the application in circuits for massive parallel computation. In this work, we discuss one example circuit of a differential synaptic cell featuring multiple parallel connected FTJ devices. Moreover, from the circuit requirements we deduce that the absolute difference in currents $I_{on}-\mathrm{I}_{off}$ is a more critical figure of merit than the tunneling electroresistance ratio (TER). Based on this, we discuss the potential of FTJ device optimization by means of electrode work function engineering in bilayer HZO/Al2O3FTJs.