Nathan Gonzales, J. Dinh, D. Lewis, N. Gilbert, Bard Pedersen, D. Kamalanathan, J. Jameson, S. Hollmer
{"title":"基于亚量子电导桥RAM的超低功耗非易失性存储器设计","authors":"Nathan Gonzales, J. Dinh, D. Lewis, N. Gilbert, Bard Pedersen, D. Kamalanathan, J. Jameson, S. Hollmer","doi":"10.1109/IMW.2016.7493566","DOIUrl":null,"url":null,"abstract":"Conductive-bridge RAM (CBRAM) memory cells offer speed, voltage, and energy advantages over floating gate flash cells. Here, we describe a memory design which carries these cell-level advantages up to the product level, achieving 100x lower read and write power and 10x lower standby power than typical flash-based designs.","PeriodicalId":365759,"journal":{"name":"2016 IEEE 8th International Memory Workshop (IMW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Ultra Low-Power Non-Volatile Memory Design Enabled by Subquantum Conductive-Bridge RAM\",\"authors\":\"Nathan Gonzales, J. Dinh, D. Lewis, N. Gilbert, Bard Pedersen, D. Kamalanathan, J. Jameson, S. Hollmer\",\"doi\":\"10.1109/IMW.2016.7493566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conductive-bridge RAM (CBRAM) memory cells offer speed, voltage, and energy advantages over floating gate flash cells. Here, we describe a memory design which carries these cell-level advantages up to the product level, achieving 100x lower read and write power and 10x lower standby power than typical flash-based designs.\",\"PeriodicalId\":365759,\"journal\":{\"name\":\"2016 IEEE 8th International Memory Workshop (IMW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 8th International Memory Workshop (IMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMW.2016.7493566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 8th International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW.2016.7493566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Ultra Low-Power Non-Volatile Memory Design Enabled by Subquantum Conductive-Bridge RAM
Conductive-bridge RAM (CBRAM) memory cells offer speed, voltage, and energy advantages over floating gate flash cells. Here, we describe a memory design which carries these cell-level advantages up to the product level, achieving 100x lower read and write power and 10x lower standby power than typical flash-based designs.