在联想网络和游戏化中优化学习:经验教训和启示

Chien-Sing Lee
{"title":"在联想网络和游戏化中优化学习:经验教训和启示","authors":"Chien-Sing Lee","doi":"10.1109/R10-HTC49770.2020.9356957","DOIUrl":null,"url":null,"abstract":"Technological trends have evolved, extended and converged in the 21$^{st}$ century. Much of these evolutions are incremental, differential and the aim is to sustain or rise above others amidst a dynamic landscape. As data and knowledge bases extend, the fitness of features in each evolution requires systemic modelling targeting multi-objectives. Identification of the local regions of interest and significant features enable more efficient optimization. The information core, current or new invariant features which proceed to the next iteration coupled with gamification in certain domains, can lead to varying implications. This paper briefly reviews literature on associative networks, case-based reasoning, combinations and permutations, optimization, and gamification and conclude with implications and opportunities for symbiotic networks.","PeriodicalId":167196,"journal":{"name":"2020 IEEE 8th R10 Humanitarian Technology Conference (R10-HTC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimizing learning in associative networks and gamification: Lessons learnt and implications\",\"authors\":\"Chien-Sing Lee\",\"doi\":\"10.1109/R10-HTC49770.2020.9356957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technological trends have evolved, extended and converged in the 21$^{st}$ century. Much of these evolutions are incremental, differential and the aim is to sustain or rise above others amidst a dynamic landscape. As data and knowledge bases extend, the fitness of features in each evolution requires systemic modelling targeting multi-objectives. Identification of the local regions of interest and significant features enable more efficient optimization. The information core, current or new invariant features which proceed to the next iteration coupled with gamification in certain domains, can lead to varying implications. This paper briefly reviews literature on associative networks, case-based reasoning, combinations and permutations, optimization, and gamification and conclude with implications and opportunities for symbiotic networks.\",\"PeriodicalId\":167196,\"journal\":{\"name\":\"2020 IEEE 8th R10 Humanitarian Technology Conference (R10-HTC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 8th R10 Humanitarian Technology Conference (R10-HTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/R10-HTC49770.2020.9356957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 8th R10 Humanitarian Technology Conference (R10-HTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/R10-HTC49770.2020.9356957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

技术趋势在21世纪不断发展、扩展和融合。这些进化大多是渐进的、有差异的,目的是在一个动态的环境中维持或超越其他进化。随着数据和知识库的扩展,每次进化中特征的适应度需要针对多目标的系统建模。识别感兴趣的局部区域和重要特征可以实现更有效的优化。信息核心,当前的或新的不变特征,与某些领域的游戏化相结合,可以导致不同的含义。本文简要回顾了有关联想网络、基于案例的推理、组合和排列、优化和游戏化的文献,并总结了共生网络的启示和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing learning in associative networks and gamification: Lessons learnt and implications
Technological trends have evolved, extended and converged in the 21$^{st}$ century. Much of these evolutions are incremental, differential and the aim is to sustain or rise above others amidst a dynamic landscape. As data and knowledge bases extend, the fitness of features in each evolution requires systemic modelling targeting multi-objectives. Identification of the local regions of interest and significant features enable more efficient optimization. The information core, current or new invariant features which proceed to the next iteration coupled with gamification in certain domains, can lead to varying implications. This paper briefly reviews literature on associative networks, case-based reasoning, combinations and permutations, optimization, and gamification and conclude with implications and opportunities for symbiotic networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信