Jeni Liao, Jianxiong Yang, Kangling, Minjuan Zheng, M. Shiau, Hong-Chong Wu, Ching-Hwa Cheng, Don-Gey Liu
{"title":"1.2 V低压仪表放大器的设计","authors":"Jeni Liao, Jianxiong Yang, Kangling, Minjuan Zheng, M. Shiau, Hong-Chong Wu, Ching-Hwa Cheng, Don-Gey Liu","doi":"10.1109/asid52932.2021.9651684","DOIUrl":null,"url":null,"abstract":"In this paper, a low-voltage current-mode instrumentation amplifier (IA) will be investigated. The main structure consists of two Operational Floating Current Conveyors (OFCCs) with a high-pass filter, low-pass filter, and the chopping technique to filter out noises. The OFCC was designed to operate in the current mode that can perform all the functions of an operational amplifier in an instrumentation amplifier at low voltages. A single power supply set at 1.2V to reduce the power consumption was designed in our study. Some of the MOSFETs were designed to operate in the subthreshold region to reduce the power of the circuit. And a self-cascode structure was employed to enhance its tracking capability at the output. In our simulation, the TSMC 0.18μm CMOS technology was used for our OFCC. According to the results, the IA can perform to achieve 99 dB for common mode rejection ratio (CMRR) with a 10 kHz bandwidth. It is highly feasible to realize a low-power wearable electronic device with our IA.","PeriodicalId":150884,"journal":{"name":"2021 IEEE 15th International Conference on Anti-counterfeiting, Security, and Identification (ASID)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of a Low-Voltage Instrumentation Amplifier at 1.2 V\",\"authors\":\"Jeni Liao, Jianxiong Yang, Kangling, Minjuan Zheng, M. Shiau, Hong-Chong Wu, Ching-Hwa Cheng, Don-Gey Liu\",\"doi\":\"10.1109/asid52932.2021.9651684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a low-voltage current-mode instrumentation amplifier (IA) will be investigated. The main structure consists of two Operational Floating Current Conveyors (OFCCs) with a high-pass filter, low-pass filter, and the chopping technique to filter out noises. The OFCC was designed to operate in the current mode that can perform all the functions of an operational amplifier in an instrumentation amplifier at low voltages. A single power supply set at 1.2V to reduce the power consumption was designed in our study. Some of the MOSFETs were designed to operate in the subthreshold region to reduce the power of the circuit. And a self-cascode structure was employed to enhance its tracking capability at the output. In our simulation, the TSMC 0.18μm CMOS technology was used for our OFCC. According to the results, the IA can perform to achieve 99 dB for common mode rejection ratio (CMRR) with a 10 kHz bandwidth. It is highly feasible to realize a low-power wearable electronic device with our IA.\",\"PeriodicalId\":150884,\"journal\":{\"name\":\"2021 IEEE 15th International Conference on Anti-counterfeiting, Security, and Identification (ASID)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 15th International Conference on Anti-counterfeiting, Security, and Identification (ASID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/asid52932.2021.9651684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 15th International Conference on Anti-counterfeiting, Security, and Identification (ASID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/asid52932.2021.9651684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a Low-Voltage Instrumentation Amplifier at 1.2 V
In this paper, a low-voltage current-mode instrumentation amplifier (IA) will be investigated. The main structure consists of two Operational Floating Current Conveyors (OFCCs) with a high-pass filter, low-pass filter, and the chopping technique to filter out noises. The OFCC was designed to operate in the current mode that can perform all the functions of an operational amplifier in an instrumentation amplifier at low voltages. A single power supply set at 1.2V to reduce the power consumption was designed in our study. Some of the MOSFETs were designed to operate in the subthreshold region to reduce the power of the circuit. And a self-cascode structure was employed to enhance its tracking capability at the output. In our simulation, the TSMC 0.18μm CMOS technology was used for our OFCC. According to the results, the IA can perform to achieve 99 dB for common mode rejection ratio (CMRR) with a 10 kHz bandwidth. It is highly feasible to realize a low-power wearable electronic device with our IA.