F. Maria, F. Balestra, C. Theodorou, G. Ghibaudo, C. Zota, E. Cha
{"title":"低至10K量子技术InGaAs hemt自热效应的实验研究","authors":"F. Maria, F. Balestra, C. Theodorou, G. Ghibaudo, C. Zota, E. Cha","doi":"10.1109/IRPS48203.2023.10118294","DOIUrl":null,"url":null,"abstract":"This work studies self-heating effects in InGaAs cryogenic HEMT devices, which aim at the enhancement of control/readout electronics performance in quantum computers. Starting from the well-known method of gate resistance thermometry, documented in literature for its reliable results, we characterized these devices down to deep cryogenic temperatures, namely 10 K, typical of signal-processing electronics for qubits, such as low-noise amplifiers (LNA). We furthermore compared the results with those belonging to far more industrialized silicon technologies (Si FDSOI and bulk), showing exceptional performance of the InGaAs HEMTs thanks to their lack of buried oxide and quantum well structure, which combined with their high electron-mobility, makes them a great study case for the technologies of the future.","PeriodicalId":159030,"journal":{"name":"2023 IEEE International Reliability Physics Symposium (IRPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study of Self-Heating Effect in InGaAs HEMTs for Quantum Technologies Down to 10K\",\"authors\":\"F. Maria, F. Balestra, C. Theodorou, G. Ghibaudo, C. Zota, E. Cha\",\"doi\":\"10.1109/IRPS48203.2023.10118294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work studies self-heating effects in InGaAs cryogenic HEMT devices, which aim at the enhancement of control/readout electronics performance in quantum computers. Starting from the well-known method of gate resistance thermometry, documented in literature for its reliable results, we characterized these devices down to deep cryogenic temperatures, namely 10 K, typical of signal-processing electronics for qubits, such as low-noise amplifiers (LNA). We furthermore compared the results with those belonging to far more industrialized silicon technologies (Si FDSOI and bulk), showing exceptional performance of the InGaAs HEMTs thanks to their lack of buried oxide and quantum well structure, which combined with their high electron-mobility, makes them a great study case for the technologies of the future.\",\"PeriodicalId\":159030,\"journal\":{\"name\":\"2023 IEEE International Reliability Physics Symposium (IRPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Reliability Physics Symposium (IRPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS48203.2023.10118294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS48203.2023.10118294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental Study of Self-Heating Effect in InGaAs HEMTs for Quantum Technologies Down to 10K
This work studies self-heating effects in InGaAs cryogenic HEMT devices, which aim at the enhancement of control/readout electronics performance in quantum computers. Starting from the well-known method of gate resistance thermometry, documented in literature for its reliable results, we characterized these devices down to deep cryogenic temperatures, namely 10 K, typical of signal-processing electronics for qubits, such as low-noise amplifiers (LNA). We furthermore compared the results with those belonging to far more industrialized silicon technologies (Si FDSOI and bulk), showing exceptional performance of the InGaAs HEMTs thanks to their lack of buried oxide and quantum well structure, which combined with their high electron-mobility, makes them a great study case for the technologies of the future.