{"title":"氮素有效性对抱子甘蓝和韭菜干物质生产、氮素吸收和光截获的影响","authors":"R. Booij, A. Kreuzer, A. Smit, A. Werf","doi":"10.18174/NJAS.V44I1.554","DOIUrl":null,"url":null,"abstract":"In field experiments with Brussels sprouts (cv. Kundry) and leeks (cv. Arcona) on a sandy soil, DM production and N uptake during crop growth were studied at different N application rates. N fertilizer application rate affected DM production, leaf area expansion and N uptake more strongly in Brussels sprouts than in leeks. When all N was applied before transplanting, Brussels sprouts showed a higher recovery of N fertilizer than leeks. This was explained by a higher rate of DM production in Brussels sprouts, a consequence of faster leaf area expansion. Late N application, whether as a part of a split application or not, increased N uptake more than DM production, so that tissue N concentrations increased. The relationship between N uptake and DM production depended on N availability and crop growth stage, and if all N was applied before transplanting, the relationship could be described by an asymptotic function. Plant plasticity allowed 'luxury consumption' of N to take place when availability was ample and 'dilution' of N when shortages developed during later growth stages. This implied an increasing tissue N concentration with increasing N application and a decreasing N concentration with increasing age. To achieve near-maximum DM production at any time, tissue N concentration should be kept at 2.8-3.1% DW during the whole growing period for Brussels sprouts as well as for leeks. However, in Brussels sprouts a minimum concentration of 1.2-1.5% DW still allowed growth. In both crops N uptake increased linearly with LAI until maximum leaf area (LAI = 4-5) was reached and this relationship was not affected by N application rate or by experimental year. Irrespective of N application rate or species, 2.3 g above ground biomass per MJ intercepted radiation was produced. Therefore, measurement of radiation interception by the canopy can be used as a tool to estimate the N status of the crop.","PeriodicalId":324908,"journal":{"name":"Netherlands Journal of Agricultural Science","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Effect of nitrogen availability on dry matter production, nitrogen uptake and light interception of Brussels sprouts and leeks\",\"authors\":\"R. Booij, A. Kreuzer, A. Smit, A. Werf\",\"doi\":\"10.18174/NJAS.V44I1.554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In field experiments with Brussels sprouts (cv. Kundry) and leeks (cv. Arcona) on a sandy soil, DM production and N uptake during crop growth were studied at different N application rates. N fertilizer application rate affected DM production, leaf area expansion and N uptake more strongly in Brussels sprouts than in leeks. When all N was applied before transplanting, Brussels sprouts showed a higher recovery of N fertilizer than leeks. This was explained by a higher rate of DM production in Brussels sprouts, a consequence of faster leaf area expansion. Late N application, whether as a part of a split application or not, increased N uptake more than DM production, so that tissue N concentrations increased. The relationship between N uptake and DM production depended on N availability and crop growth stage, and if all N was applied before transplanting, the relationship could be described by an asymptotic function. Plant plasticity allowed 'luxury consumption' of N to take place when availability was ample and 'dilution' of N when shortages developed during later growth stages. This implied an increasing tissue N concentration with increasing N application and a decreasing N concentration with increasing age. To achieve near-maximum DM production at any time, tissue N concentration should be kept at 2.8-3.1% DW during the whole growing period for Brussels sprouts as well as for leeks. However, in Brussels sprouts a minimum concentration of 1.2-1.5% DW still allowed growth. In both crops N uptake increased linearly with LAI until maximum leaf area (LAI = 4-5) was reached and this relationship was not affected by N application rate or by experimental year. Irrespective of N application rate or species, 2.3 g above ground biomass per MJ intercepted radiation was produced. Therefore, measurement of radiation interception by the canopy can be used as a tool to estimate the N status of the crop.\",\"PeriodicalId\":324908,\"journal\":{\"name\":\"Netherlands Journal of Agricultural Science\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Netherlands Journal of Agricultural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18174/NJAS.V44I1.554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netherlands Journal of Agricultural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18174/NJAS.V44I1.554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of nitrogen availability on dry matter production, nitrogen uptake and light interception of Brussels sprouts and leeks
In field experiments with Brussels sprouts (cv. Kundry) and leeks (cv. Arcona) on a sandy soil, DM production and N uptake during crop growth were studied at different N application rates. N fertilizer application rate affected DM production, leaf area expansion and N uptake more strongly in Brussels sprouts than in leeks. When all N was applied before transplanting, Brussels sprouts showed a higher recovery of N fertilizer than leeks. This was explained by a higher rate of DM production in Brussels sprouts, a consequence of faster leaf area expansion. Late N application, whether as a part of a split application or not, increased N uptake more than DM production, so that tissue N concentrations increased. The relationship between N uptake and DM production depended on N availability and crop growth stage, and if all N was applied before transplanting, the relationship could be described by an asymptotic function. Plant plasticity allowed 'luxury consumption' of N to take place when availability was ample and 'dilution' of N when shortages developed during later growth stages. This implied an increasing tissue N concentration with increasing N application and a decreasing N concentration with increasing age. To achieve near-maximum DM production at any time, tissue N concentration should be kept at 2.8-3.1% DW during the whole growing period for Brussels sprouts as well as for leeks. However, in Brussels sprouts a minimum concentration of 1.2-1.5% DW still allowed growth. In both crops N uptake increased linearly with LAI until maximum leaf area (LAI = 4-5) was reached and this relationship was not affected by N application rate or by experimental year. Irrespective of N application rate or species, 2.3 g above ground biomass per MJ intercepted radiation was produced. Therefore, measurement of radiation interception by the canopy can be used as a tool to estimate the N status of the crop.