开放世界语义场景理解的同步聚类、推理和映射

H. Blum, M. Müller, A. Gawel, R. Siegwart, César Cadena
{"title":"开放世界语义场景理解的同步聚类、推理和映射","authors":"H. Blum, M. Müller, A. Gawel, R. Siegwart, César Cadena","doi":"10.48550/arXiv.2206.10670","DOIUrl":null,"url":null,"abstract":"In order to operate in human environments, a robot's semantic perception has to overcome open-world challenges such as novel objects and domain gaps. Autonomous deployment to such environments therefore requires robots to update their knowledge and learn without supervision. We investigate how a robot can autonomously discover novel semantic classes and improve accuracy on known classes when exploring an unknown environment. To this end, we develop a general framework for mapping and clustering that we then use to generate a self-supervised learning signal to update a semantic segmentation model. In particular, we show how clustering parameters can be optimized during deployment and that fusion of multiple observation modalities improves novel object discovery compared to prior work. Models, data, and implementations can be found at https://github.com/hermannsblum/scim","PeriodicalId":136210,"journal":{"name":"International Symposium of Robotics Research","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SCIM: Simultaneous Clustering, Inference, and Mapping for Open-World Semantic Scene Understanding\",\"authors\":\"H. Blum, M. Müller, A. Gawel, R. Siegwart, César Cadena\",\"doi\":\"10.48550/arXiv.2206.10670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to operate in human environments, a robot's semantic perception has to overcome open-world challenges such as novel objects and domain gaps. Autonomous deployment to such environments therefore requires robots to update their knowledge and learn without supervision. We investigate how a robot can autonomously discover novel semantic classes and improve accuracy on known classes when exploring an unknown environment. To this end, we develop a general framework for mapping and clustering that we then use to generate a self-supervised learning signal to update a semantic segmentation model. In particular, we show how clustering parameters can be optimized during deployment and that fusion of multiple observation modalities improves novel object discovery compared to prior work. Models, data, and implementations can be found at https://github.com/hermannsblum/scim\",\"PeriodicalId\":136210,\"journal\":{\"name\":\"International Symposium of Robotics Research\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium of Robotics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2206.10670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.10670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了在人类环境中运行,机器人的语义感知必须克服开放世界的挑战,如新物体和领域差距。因此,在这样的环境中自主部署需要机器人在没有监督的情况下更新知识和学习。我们研究了机器人如何在探索未知环境时自主发现新的语义类并提高已知类的准确性。为此,我们开发了一个通用的映射和聚类框架,然后我们使用它来生成一个自监督学习信号来更新语义分割模型。特别是,我们展示了如何在部署过程中优化聚类参数,以及与之前的工作相比,多观测模式的融合提高了新目标的发现。可以在https://github.com/hermannsblum/scim上找到模型、数据和实现
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SCIM: Simultaneous Clustering, Inference, and Mapping for Open-World Semantic Scene Understanding
In order to operate in human environments, a robot's semantic perception has to overcome open-world challenges such as novel objects and domain gaps. Autonomous deployment to such environments therefore requires robots to update their knowledge and learn without supervision. We investigate how a robot can autonomously discover novel semantic classes and improve accuracy on known classes when exploring an unknown environment. To this end, we develop a general framework for mapping and clustering that we then use to generate a self-supervised learning signal to update a semantic segmentation model. In particular, we show how clustering parameters can be optimized during deployment and that fusion of multiple observation modalities improves novel object discovery compared to prior work. Models, data, and implementations can be found at https://github.com/hermannsblum/scim
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信