M. Lucas, M. Freitas, Artur M. S. Silva, E. Fernandes, D. Ribeiro
{"title":"羟基化2-苯乙烯基色素对人中性粒细胞氧化爆发的调节:儿茶酚群的相关性","authors":"M. Lucas, M. Freitas, Artur M. S. Silva, E. Fernandes, D. Ribeiro","doi":"10.3390/ecb2021-10283","DOIUrl":null,"url":null,"abstract":"2-Styrylchromones (2-SC) are a group of oxygen-containing heterocyclic compounds, which are characterized by the attachment of a styryl group to the C-2 position of their chromone core. Over the years, several biological activities have been attributed to 2-SC, such as antioxidant, anti-inflammatory, antimicrobial, antiviral, and antitumor activities [1,2]. Nonetheless, there are no reports in the literature about the effect of 2-SC on human neutrophils’ oxidative burst. Therefore, the present study aims to evaluate the modulation of human neutrophils’ oxidative burst by a panel of hydroxylated 2-SC, previously obtained by chemical synthesis, and to analyze the structure–activity relationship [3]. For that purpose, freshly isolated neutrophils from human blood were stimulated with phorbol-12-myristate-13-acetate, and a chemiluminescence method was applied to evaluate the oxidative burst, using luminol as a probe [4]. Considering the OH substituents present on the B-ring of 2-SC, the tested compounds can be divided into the following three groups: group 1, with a catechol group (C-3′ and C-4′); group 2, with an OH at C-4′; group 3, without any substitution on the B-ring. The 2-SC from group 1 were the most active, with IC50 values in the order of 1 µM. In conclusion, the catechol B-ring appears to play an important role in the modulation of human neutrophils’ oxidative burst by 2-SC.","PeriodicalId":400770,"journal":{"name":"Biology and Life Sciences Forum","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation of Human Neutrophils’ Oxidative Burst by Hydroxylated 2-Styrylchromones: The Relevance of the Catechol Group\",\"authors\":\"M. Lucas, M. Freitas, Artur M. S. Silva, E. Fernandes, D. Ribeiro\",\"doi\":\"10.3390/ecb2021-10283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2-Styrylchromones (2-SC) are a group of oxygen-containing heterocyclic compounds, which are characterized by the attachment of a styryl group to the C-2 position of their chromone core. Over the years, several biological activities have been attributed to 2-SC, such as antioxidant, anti-inflammatory, antimicrobial, antiviral, and antitumor activities [1,2]. Nonetheless, there are no reports in the literature about the effect of 2-SC on human neutrophils’ oxidative burst. Therefore, the present study aims to evaluate the modulation of human neutrophils’ oxidative burst by a panel of hydroxylated 2-SC, previously obtained by chemical synthesis, and to analyze the structure–activity relationship [3]. For that purpose, freshly isolated neutrophils from human blood were stimulated with phorbol-12-myristate-13-acetate, and a chemiluminescence method was applied to evaluate the oxidative burst, using luminol as a probe [4]. Considering the OH substituents present on the B-ring of 2-SC, the tested compounds can be divided into the following three groups: group 1, with a catechol group (C-3′ and C-4′); group 2, with an OH at C-4′; group 3, without any substitution on the B-ring. The 2-SC from group 1 were the most active, with IC50 values in the order of 1 µM. In conclusion, the catechol B-ring appears to play an important role in the modulation of human neutrophils’ oxidative burst by 2-SC.\",\"PeriodicalId\":400770,\"journal\":{\"name\":\"Biology and Life Sciences Forum\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology and Life Sciences Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ecb2021-10283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Life Sciences Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ecb2021-10283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modulation of Human Neutrophils’ Oxidative Burst by Hydroxylated 2-Styrylchromones: The Relevance of the Catechol Group
2-Styrylchromones (2-SC) are a group of oxygen-containing heterocyclic compounds, which are characterized by the attachment of a styryl group to the C-2 position of their chromone core. Over the years, several biological activities have been attributed to 2-SC, such as antioxidant, anti-inflammatory, antimicrobial, antiviral, and antitumor activities [1,2]. Nonetheless, there are no reports in the literature about the effect of 2-SC on human neutrophils’ oxidative burst. Therefore, the present study aims to evaluate the modulation of human neutrophils’ oxidative burst by a panel of hydroxylated 2-SC, previously obtained by chemical synthesis, and to analyze the structure–activity relationship [3]. For that purpose, freshly isolated neutrophils from human blood were stimulated with phorbol-12-myristate-13-acetate, and a chemiluminescence method was applied to evaluate the oxidative burst, using luminol as a probe [4]. Considering the OH substituents present on the B-ring of 2-SC, the tested compounds can be divided into the following three groups: group 1, with a catechol group (C-3′ and C-4′); group 2, with an OH at C-4′; group 3, without any substitution on the B-ring. The 2-SC from group 1 were the most active, with IC50 values in the order of 1 µM. In conclusion, the catechol B-ring appears to play an important role in the modulation of human neutrophils’ oxidative burst by 2-SC.