{"title":"利用时间序列数据设计可重复科学的pid","authors":"Wenji Tu, S. Makonin","doi":"10.48550/arXiv.2209.10475","DOIUrl":null,"url":null,"abstract":"As part of the investigation done by the IEEE Standards Association P2957 Working Group, called Big Data Governance and Metadata Management, the use of persistent identifiers (PIDs) is looked at for tackling the problem of reproducible research and science. This short paper proposes a preliminary method using PIDs to reproduce research results using time-series data. Furthermore, we feel it is possible to use the methodology and design for other types of datasets.","PeriodicalId":447500,"journal":{"name":"International Conference on Metadata and Semantics Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing PIDs for Reproducible Science Using Time-Series Data\",\"authors\":\"Wenji Tu, S. Makonin\",\"doi\":\"10.48550/arXiv.2209.10475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As part of the investigation done by the IEEE Standards Association P2957 Working Group, called Big Data Governance and Metadata Management, the use of persistent identifiers (PIDs) is looked at for tackling the problem of reproducible research and science. This short paper proposes a preliminary method using PIDs to reproduce research results using time-series data. Furthermore, we feel it is possible to use the methodology and design for other types of datasets.\",\"PeriodicalId\":447500,\"journal\":{\"name\":\"International Conference on Metadata and Semantics Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Metadata and Semantics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.10475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Metadata and Semantics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.10475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Designing PIDs for Reproducible Science Using Time-Series Data
As part of the investigation done by the IEEE Standards Association P2957 Working Group, called Big Data Governance and Metadata Management, the use of persistent identifiers (PIDs) is looked at for tackling the problem of reproducible research and science. This short paper proposes a preliminary method using PIDs to reproduce research results using time-series data. Furthermore, we feel it is possible to use the methodology and design for other types of datasets.