不同坡面土壤剖面径流系数试验研究

D. Khadka
{"title":"不同坡面土壤剖面径流系数试验研究","authors":"D. Khadka","doi":"10.4236/OJCE.2019.92011","DOIUrl":null,"url":null,"abstract":"The estimation of peak discharge from a catchment due to intense rainfall is a difficult task that may occur in a return period. If cannot be estimated accurately, it may lead to serious problem in hydraulic structure design like bridge, culvert across a river and drainage system. The main parameter which affects the peak flow is runoff coefficient of the catchment which directly depends on the soil type, its slope and land use pattern with vegetation covers. For the purpose, this study was carried out to estimate maximum runoff coefficients for different land profiles and soil types in hill slope model developed in 10 degree with the horizontal to the rainfall simulator rig (Basic Hydrology system-S12) experimentally which can give more reliable value than the real field test method as it is easier than field test especially in hill slope. The soil slope preparation was made of sand, silt and clay separately and the experiments were carried out in a controlled system. The slope prepared represented a small catchment on a plot of 2.02 meter length, 1 meter wide and 0.15 m depth soil plots (at the slope of 10° to the horizontal plane). From the experiment in different soil plots, the rainfall runoff coefficients were observed as 0.428 - 0.53 for sand soil slope, 0.46 - 0.55 for silt soil slope and 0.42 - 0.51 for clay soil slope under uniform rainfall rate of 4 lpm to 13 lpm in each soil slope. Rainfall runoff correlation equation was found with the values of R above 90% in each soil slope. The value observed is within the range of rational value of 0.05 to 0.95 as standard which concluded that the performance of simulator was found good to deal with rational values. And the runoff coefficients for these soil types can be taken within the range obtained to estimate peak discharge in any small catchment area depending on the soil types.","PeriodicalId":302856,"journal":{"name":"Open Journal of Civil Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Experimental Study of Runoff Coefficients for Different Hill Slope Soil Profiles\",\"authors\":\"D. Khadka\",\"doi\":\"10.4236/OJCE.2019.92011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The estimation of peak discharge from a catchment due to intense rainfall is a difficult task that may occur in a return period. If cannot be estimated accurately, it may lead to serious problem in hydraulic structure design like bridge, culvert across a river and drainage system. The main parameter which affects the peak flow is runoff coefficient of the catchment which directly depends on the soil type, its slope and land use pattern with vegetation covers. For the purpose, this study was carried out to estimate maximum runoff coefficients for different land profiles and soil types in hill slope model developed in 10 degree with the horizontal to the rainfall simulator rig (Basic Hydrology system-S12) experimentally which can give more reliable value than the real field test method as it is easier than field test especially in hill slope. The soil slope preparation was made of sand, silt and clay separately and the experiments were carried out in a controlled system. The slope prepared represented a small catchment on a plot of 2.02 meter length, 1 meter wide and 0.15 m depth soil plots (at the slope of 10° to the horizontal plane). From the experiment in different soil plots, the rainfall runoff coefficients were observed as 0.428 - 0.53 for sand soil slope, 0.46 - 0.55 for silt soil slope and 0.42 - 0.51 for clay soil slope under uniform rainfall rate of 4 lpm to 13 lpm in each soil slope. Rainfall runoff correlation equation was found with the values of R above 90% in each soil slope. The value observed is within the range of rational value of 0.05 to 0.95 as standard which concluded that the performance of simulator was found good to deal with rational values. And the runoff coefficients for these soil types can be taken within the range obtained to estimate peak discharge in any small catchment area depending on the soil types.\",\"PeriodicalId\":302856,\"journal\":{\"name\":\"Open Journal of Civil Engineering\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/OJCE.2019.92011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/OJCE.2019.92011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

估计集水区因强降雨而产生的峰值流量是一项艰巨的任务,这种任务可能会在回归期发生。如果不能准确估算,可能会导致桥梁、跨河涵洞和排水系统等水工结构设计出现严重问题。影响流域峰值流量的主要参数是流域径流系数,径流系数直接取决于土壤类型、坡度和有植被覆盖的土地利用方式。为此,本研究利用水平对降雨模拟装置(Basic Hydrology system-S12)在10度坡度坡度模型中进行了不同土地剖面和土壤类型的最大径流系数的实验估算,该方法比实际的现场测试方法更容易,特别是在山坡上,比实际的现场测试方法得到的值更可靠。采用砂土、粉土和粘土分别制备土坡,并在控制系统中进行试验。在一个长2.02米、宽1米、深0.15米的地块上(与水平面坡度为10°),所制备的斜坡代表了一个小集水区。不同样地的试验结果表明,在降雨速率为4 ~ 13 lpm的条件下,沙土坡面降雨径流系数为0.428 ~ 0.53,粉土坡面降雨径流系数为0.46 ~ 0.55,粘土坡面降雨径流系数为0.42 ~ 0.51。各土坡R值大于90%时,形成降雨径流相关方程。观测值在0.05 ~ 0.95的有理值范围内,表明模拟器处理有理值的性能良好。这些土壤类型的径流系数可以在给定的范围内根据土壤类型估计任何小流域的峰值流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Study of Runoff Coefficients for Different Hill Slope Soil Profiles
The estimation of peak discharge from a catchment due to intense rainfall is a difficult task that may occur in a return period. If cannot be estimated accurately, it may lead to serious problem in hydraulic structure design like bridge, culvert across a river and drainage system. The main parameter which affects the peak flow is runoff coefficient of the catchment which directly depends on the soil type, its slope and land use pattern with vegetation covers. For the purpose, this study was carried out to estimate maximum runoff coefficients for different land profiles and soil types in hill slope model developed in 10 degree with the horizontal to the rainfall simulator rig (Basic Hydrology system-S12) experimentally which can give more reliable value than the real field test method as it is easier than field test especially in hill slope. The soil slope preparation was made of sand, silt and clay separately and the experiments were carried out in a controlled system. The slope prepared represented a small catchment on a plot of 2.02 meter length, 1 meter wide and 0.15 m depth soil plots (at the slope of 10° to the horizontal plane). From the experiment in different soil plots, the rainfall runoff coefficients were observed as 0.428 - 0.53 for sand soil slope, 0.46 - 0.55 for silt soil slope and 0.42 - 0.51 for clay soil slope under uniform rainfall rate of 4 lpm to 13 lpm in each soil slope. Rainfall runoff correlation equation was found with the values of R above 90% in each soil slope. The value observed is within the range of rational value of 0.05 to 0.95 as standard which concluded that the performance of simulator was found good to deal with rational values. And the runoff coefficients for these soil types can be taken within the range obtained to estimate peak discharge in any small catchment area depending on the soil types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信