利用来自在线社交媒体的大规模基于位置的数据了解城市人类活动和流动模式

Samiul Hasan, Xianyuan Zhan, S. Ukkusuri
{"title":"利用来自在线社交媒体的大规模基于位置的数据了解城市人类活动和流动模式","authors":"Samiul Hasan, Xianyuan Zhan, S. Ukkusuri","doi":"10.1145/2505821.2505823","DOIUrl":null,"url":null,"abstract":"Location-based check-in services enable individuals to share their activity-related choices providing a new source of human activity data for researchers. In this paper urban human mobility and activity patterns are analyzed using location-based data collected from social media applications (e.g. Foursquare and Twitter). We first characterize aggregate activity patterns by finding the distributions of different activity categories over a city geography and thus determine the purpose-specific activity distribution maps. We then characterize individual activity patterns by finding the timing distribution of visiting different places depending on activity category. We also explore the frequency of visiting a place with respect to the rank of the place in individual's visitation records and show interesting match with the results from other studies based on mobile phone data.","PeriodicalId":157169,"journal":{"name":"UrbComp '13","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"318","resultStr":"{\"title\":\"Understanding urban human activity and mobility patterns using large-scale location-based data from online social media\",\"authors\":\"Samiul Hasan, Xianyuan Zhan, S. Ukkusuri\",\"doi\":\"10.1145/2505821.2505823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Location-based check-in services enable individuals to share their activity-related choices providing a new source of human activity data for researchers. In this paper urban human mobility and activity patterns are analyzed using location-based data collected from social media applications (e.g. Foursquare and Twitter). We first characterize aggregate activity patterns by finding the distributions of different activity categories over a city geography and thus determine the purpose-specific activity distribution maps. We then characterize individual activity patterns by finding the timing distribution of visiting different places depending on activity category. We also explore the frequency of visiting a place with respect to the rank of the place in individual's visitation records and show interesting match with the results from other studies based on mobile phone data.\",\"PeriodicalId\":157169,\"journal\":{\"name\":\"UrbComp '13\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"318\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UrbComp '13\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2505821.2505823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UrbComp '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505821.2505823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 318

摘要

基于位置的签到服务使个人能够分享他们与活动相关的选择,为研究人员提供了一个新的人类活动数据来源。本文利用从社交媒体应用程序(如Foursquare和Twitter)收集的基于位置的数据,分析了城市人口的流动性和活动模式。我们首先通过寻找不同活动类别在城市地理上的分布来表征总体活动模式,从而确定特定目的的活动分布图。然后,我们通过根据活动类别找到访问不同地点的时间分布来表征个人活动模式。我们还探讨了访问某地的频率与该地点在个人访问记录中的排名,并与其他基于手机数据的研究结果进行了有趣的匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding urban human activity and mobility patterns using large-scale location-based data from online social media
Location-based check-in services enable individuals to share their activity-related choices providing a new source of human activity data for researchers. In this paper urban human mobility and activity patterns are analyzed using location-based data collected from social media applications (e.g. Foursquare and Twitter). We first characterize aggregate activity patterns by finding the distributions of different activity categories over a city geography and thus determine the purpose-specific activity distribution maps. We then characterize individual activity patterns by finding the timing distribution of visiting different places depending on activity category. We also explore the frequency of visiting a place with respect to the rank of the place in individual's visitation records and show interesting match with the results from other studies based on mobile phone data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信