数字微流控生物芯片设计与优化的最新研究与挑战

Tsung-Wei Huang, Yan-You Lin, Jia-Wen Chang, Tsung-Yi Ho
{"title":"数字微流控生物芯片设计与优化的最新研究与挑战","authors":"Tsung-Wei Huang, Yan-You Lin, Jia-Wen Chang, Tsung-Yi Ho","doi":"10.1109/SOCC.2011.6085143","DOIUrl":null,"url":null,"abstract":"Advances in droplet-based digital microfluidic biochips (DMFBs) have led to the emergence of biochips for automating laboratory procedures in biochemistry and molecular biology. These devices enable the precise control of microliter of nanoliter volumes of biochemical samples and reagents. They combine electronics with biology, and integrate various bioassay operations, such as sample preparation, analysis, separation, and detection. To meet the challenges of increasing design complexity, computer-aided-design (CAD) tools have been involved to build DMFBs efficiently. This paper provides an overview of DMFBs and describes emerging CAD tools for the automated synthesis and optimization of DMFB designs, from fluidic-level synthesis to chip-level design. Design automations are expected to relieve the design burden of manual optimization of bioassays, time-consuming chip designs, and costly testing and maintenance procedures. With the assistance of CAD tools, users can concentrate on the development and abstraction of nanoscale bioassays while leaving chip optimization and implementation details to CAD tools.","PeriodicalId":365422,"journal":{"name":"2011 IEEE International SOC Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Recent research and emerging challenges in design and optimization for digital microfluidic biochips\",\"authors\":\"Tsung-Wei Huang, Yan-You Lin, Jia-Wen Chang, Tsung-Yi Ho\",\"doi\":\"10.1109/SOCC.2011.6085143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in droplet-based digital microfluidic biochips (DMFBs) have led to the emergence of biochips for automating laboratory procedures in biochemistry and molecular biology. These devices enable the precise control of microliter of nanoliter volumes of biochemical samples and reagents. They combine electronics with biology, and integrate various bioassay operations, such as sample preparation, analysis, separation, and detection. To meet the challenges of increasing design complexity, computer-aided-design (CAD) tools have been involved to build DMFBs efficiently. This paper provides an overview of DMFBs and describes emerging CAD tools for the automated synthesis and optimization of DMFB designs, from fluidic-level synthesis to chip-level design. Design automations are expected to relieve the design burden of manual optimization of bioassays, time-consuming chip designs, and costly testing and maintenance procedures. With the assistance of CAD tools, users can concentrate on the development and abstraction of nanoscale bioassays while leaving chip optimization and implementation details to CAD tools.\",\"PeriodicalId\":365422,\"journal\":{\"name\":\"2011 IEEE International SOC Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International SOC Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCC.2011.6085143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International SOC Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2011.6085143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于液滴的数字微流控生物芯片(dmfb)的进步导致了生物化学和分子生物学中自动化实验室程序的生物芯片的出现。这些装置能够精确控制微升到纳升的生化样品和试剂的体积。它们结合了电子学和生物学,并整合了各种生物测定操作,如样品制备、分析、分离和检测。为了应对日益增加的设计复杂性的挑战,计算机辅助设计(CAD)工具被用于高效地构建dmfb。本文概述了DMFB,并描述了用于DMFB设计的自动合成和优化的新兴CAD工具,从流体级合成到芯片级设计。设计自动化有望减轻人工优化生物测定的设计负担,耗时的芯片设计,以及昂贵的测试和维护程序。在CAD工具的帮助下,用户可以专注于纳米级生物测定的开发和抽象,而将芯片优化和实施细节留给CAD工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent research and emerging challenges in design and optimization for digital microfluidic biochips
Advances in droplet-based digital microfluidic biochips (DMFBs) have led to the emergence of biochips for automating laboratory procedures in biochemistry and molecular biology. These devices enable the precise control of microliter of nanoliter volumes of biochemical samples and reagents. They combine electronics with biology, and integrate various bioassay operations, such as sample preparation, analysis, separation, and detection. To meet the challenges of increasing design complexity, computer-aided-design (CAD) tools have been involved to build DMFBs efficiently. This paper provides an overview of DMFBs and describes emerging CAD tools for the automated synthesis and optimization of DMFB designs, from fluidic-level synthesis to chip-level design. Design automations are expected to relieve the design burden of manual optimization of bioassays, time-consuming chip designs, and costly testing and maintenance procedures. With the assistance of CAD tools, users can concentrate on the development and abstraction of nanoscale bioassays while leaving chip optimization and implementation details to CAD tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信