具有自适应置信度的多类目标识别:用于快速假设消除的弱描述子级联

Guido Manfredi, M. Devy, D. Sidobre
{"title":"具有自适应置信度的多类目标识别:用于快速假设消除的弱描述子级联","authors":"Guido Manfredi, M. Devy, D. Sidobre","doi":"10.1109/ECMSM.2013.6648970","DOIUrl":null,"url":null,"abstract":"This paper points out the fact that object recognition methods are usually too complex for everyday life scenes. A robot helping humans in daily activities will need to recognize hundreds of different objects. In order to filter out unlikely models during recognition we propose the use of a cascade of simple visual descriptors. Our experiments use two global descriptors : spatial and color minimum volume bounding boxes. Results show this simple cascade can discard unlikely models up to 295 out of 300 instances and 50 out of 51 classes.","PeriodicalId":174767,"journal":{"name":"2013 IEEE 11th International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi class object recognition with an adaptive confidence: Cascade of weak descriptors for fast hypothesis elimination\",\"authors\":\"Guido Manfredi, M. Devy, D. Sidobre\",\"doi\":\"10.1109/ECMSM.2013.6648970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper points out the fact that object recognition methods are usually too complex for everyday life scenes. A robot helping humans in daily activities will need to recognize hundreds of different objects. In order to filter out unlikely models during recognition we propose the use of a cascade of simple visual descriptors. Our experiments use two global descriptors : spatial and color minimum volume bounding boxes. Results show this simple cascade can discard unlikely models up to 295 out of 300 instances and 50 out of 51 classes.\",\"PeriodicalId\":174767,\"journal\":{\"name\":\"2013 IEEE 11th International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 11th International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECMSM.2013.6648970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 11th International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMSM.2013.6648970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文指出,对于日常生活场景来说,物体识别方法通常过于复杂。帮助人类进行日常活动的机器人需要识别数百种不同的物体。为了在识别过程中过滤掉不可能的模型,我们建议使用简单的视觉描述符级联。我们的实验使用了两个全局描述符:空间和颜色最小体积边界框。结果表明,这个简单的级联可以在300个实例中丢弃295个不太可能的模型,在51个类中丢弃50个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi class object recognition with an adaptive confidence: Cascade of weak descriptors for fast hypothesis elimination
This paper points out the fact that object recognition methods are usually too complex for everyday life scenes. A robot helping humans in daily activities will need to recognize hundreds of different objects. In order to filter out unlikely models during recognition we propose the use of a cascade of simple visual descriptors. Our experiments use two global descriptors : spatial and color minimum volume bounding boxes. Results show this simple cascade can discard unlikely models up to 295 out of 300 instances and 50 out of 51 classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信