{"title":"自适应有限字长结构的低功耗容差信号处理系统设计","authors":"Yang Liu, Jibang Liu, Tong Zhang","doi":"10.1109/ISQED.2010.5450551","DOIUrl":null,"url":null,"abstract":"This paper concerns the design of low power digital signal processing integrated circuits in the presence of significant process variations. The basic idea is to leave smaller-than-worst-case timing margin for improving energy efficiency during the design phase and selectively reduce the finite word-length of circuit datapaths in post-silicon to eliminate all the timing faults during the run time. This simple idea can be intuitively justified by the fact that process variations may render only a few post-silicon datapaths to timing faults, while reducing the finite word-length of a few datapaths in signal processing systems may not necessarily make the overall algorithm-level performance unacceptable in run time. We present a design flow to implement this method and propose a dual finite word-length configuration strategy to simplify its real-life realization. Using linear low-pass filter and Turbo code decoder design at 45nm node as case studies, we quantitatively demonstrate that this adaptive finite word-length configuration design strategy may effectively relax the timing margin and accordingly reduce the power consumption by over 18% over conventional worst-case design approach.","PeriodicalId":369046,"journal":{"name":"2010 11th International Symposium on Quality Electronic Design (ISQED)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design of low-power variation tolerant signal processing systems with adaptive finite word-length configuration\",\"authors\":\"Yang Liu, Jibang Liu, Tong Zhang\",\"doi\":\"10.1109/ISQED.2010.5450551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns the design of low power digital signal processing integrated circuits in the presence of significant process variations. The basic idea is to leave smaller-than-worst-case timing margin for improving energy efficiency during the design phase and selectively reduce the finite word-length of circuit datapaths in post-silicon to eliminate all the timing faults during the run time. This simple idea can be intuitively justified by the fact that process variations may render only a few post-silicon datapaths to timing faults, while reducing the finite word-length of a few datapaths in signal processing systems may not necessarily make the overall algorithm-level performance unacceptable in run time. We present a design flow to implement this method and propose a dual finite word-length configuration strategy to simplify its real-life realization. Using linear low-pass filter and Turbo code decoder design at 45nm node as case studies, we quantitatively demonstrate that this adaptive finite word-length configuration design strategy may effectively relax the timing margin and accordingly reduce the power consumption by over 18% over conventional worst-case design approach.\",\"PeriodicalId\":369046,\"journal\":{\"name\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2010.5450551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2010.5450551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of low-power variation tolerant signal processing systems with adaptive finite word-length configuration
This paper concerns the design of low power digital signal processing integrated circuits in the presence of significant process variations. The basic idea is to leave smaller-than-worst-case timing margin for improving energy efficiency during the design phase and selectively reduce the finite word-length of circuit datapaths in post-silicon to eliminate all the timing faults during the run time. This simple idea can be intuitively justified by the fact that process variations may render only a few post-silicon datapaths to timing faults, while reducing the finite word-length of a few datapaths in signal processing systems may not necessarily make the overall algorithm-level performance unacceptable in run time. We present a design flow to implement this method and propose a dual finite word-length configuration strategy to simplify its real-life realization. Using linear low-pass filter and Turbo code decoder design at 45nm node as case studies, we quantitatively demonstrate that this adaptive finite word-length configuration design strategy may effectively relax the timing margin and accordingly reduce the power consumption by over 18% over conventional worst-case design approach.