实时空间众包多工作者任务的离线工作者选择

Yongjian Zhao, Qi Han
{"title":"实时空间众包多工作者任务的离线工作者选择","authors":"Yongjian Zhao, Qi Han","doi":"10.1109/MDM.2019.00117","DOIUrl":null,"url":null,"abstract":"Spatial crowdsourcing consists of location-specific tasks that require people to be physically at specific locations to complete them. In this paper we focus on worker selection for spatial crowdsourcing where each task requires multiple workers to accomplish. We mathematically formulate the problem and prove its APX-hardness. We develop efficient greedy algorithms with a good approximation ratio. Compared with state-of-the art approach, our proposed algorithm outperforms by 35%.","PeriodicalId":241426,"journal":{"name":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Offline Worker Selection for Real-Time Spatial Crowdsourcing Multi-Worker Tasks\",\"authors\":\"Yongjian Zhao, Qi Han\",\"doi\":\"10.1109/MDM.2019.00117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial crowdsourcing consists of location-specific tasks that require people to be physically at specific locations to complete them. In this paper we focus on worker selection for spatial crowdsourcing where each task requires multiple workers to accomplish. We mathematically formulate the problem and prove its APX-hardness. We develop efficient greedy algorithms with a good approximation ratio. Compared with state-of-the art approach, our proposed algorithm outperforms by 35%.\",\"PeriodicalId\":241426,\"journal\":{\"name\":\"2019 20th IEEE International Conference on Mobile Data Management (MDM)\",\"volume\":\"205 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th IEEE International Conference on Mobile Data Management (MDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDM.2019.00117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2019.00117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空间众包由特定地点的任务组成,这些任务需要人们在特定地点完成。在本文中,我们关注的是空间众包的工人选择,其中每个任务都需要多个工人来完成。用数学形式给出了问题的形式,并证明了其apx硬度。我们开发了具有良好近似比的高效贪婪算法。与最先进的方法相比,我们提出的算法的性能高出35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Offline Worker Selection for Real-Time Spatial Crowdsourcing Multi-Worker Tasks
Spatial crowdsourcing consists of location-specific tasks that require people to be physically at specific locations to complete them. In this paper we focus on worker selection for spatial crowdsourcing where each task requires multiple workers to accomplish. We mathematically formulate the problem and prove its APX-hardness. We develop efficient greedy algorithms with a good approximation ratio. Compared with state-of-the art approach, our proposed algorithm outperforms by 35%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信