使用机器学习的三维集成系统的黑盒优化

H. Torun, M. Swaminathan
{"title":"使用机器学习的三维集成系统的黑盒优化","authors":"H. Torun, M. Swaminathan","doi":"10.1109/EPEPS.2017.8329698","DOIUrl":null,"url":null,"abstract":"Increasing complexity of electronics originates new challenges to system optimization. This work proposes a new black box optimization algorithm based on machine learning to address these challenges and analyzes its performance for clock skew minimization of 3D integrated systems.","PeriodicalId":397179,"journal":{"name":"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Black-box optimization of 3D integrated systems using machine learning\",\"authors\":\"H. Torun, M. Swaminathan\",\"doi\":\"10.1109/EPEPS.2017.8329698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing complexity of electronics originates new challenges to system optimization. This work proposes a new black box optimization algorithm based on machine learning to address these challenges and analyzes its performance for clock skew minimization of 3D integrated systems.\",\"PeriodicalId\":397179,\"journal\":{\"name\":\"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPS.2017.8329698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2017.8329698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

电子产品日益复杂,对系统优化提出了新的挑战。本文提出了一种新的基于机器学习的黑盒优化算法来解决这些挑战,并分析了其在3D集成系统时钟偏差最小化方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Black-box optimization of 3D integrated systems using machine learning
Increasing complexity of electronics originates new challenges to system optimization. This work proposes a new black box optimization algorithm based on machine learning to address these challenges and analyzes its performance for clock skew minimization of 3D integrated systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信