面向事件的多通道筛选模块

Qiang Li, Zongtian Liu, Lei Chen, Xianchuan Wang
{"title":"面向事件的多通道筛选模块","authors":"Qiang Li, Zongtian Liu, Lei Chen, Xianchuan Wang","doi":"10.1109/ISKE.2015.56","DOIUrl":null,"url":null,"abstract":"Coreference resolution is one of the key issues in the natural language processing, it can eliminate uncertain problems of event in the event-oriented natural language processing, and that is important for the upper application of event. This paper builds an event-oriented multi-pass sieve module for coreference resolution, and combined with the characteristics of the event, we add the constraint conditions to each sieve to improve the accuracy of each sieve. We use this module to carry on experiment for object elements of the event. Compared with machine learning method based on C4.5 decision tree, it has a very big enhancement on the performance.","PeriodicalId":312629,"journal":{"name":"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Event-Oriented Multi-pass Sieve Module for Coreference Resolution\",\"authors\":\"Qiang Li, Zongtian Liu, Lei Chen, Xianchuan Wang\",\"doi\":\"10.1109/ISKE.2015.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coreference resolution is one of the key issues in the natural language processing, it can eliminate uncertain problems of event in the event-oriented natural language processing, and that is important for the upper application of event. This paper builds an event-oriented multi-pass sieve module for coreference resolution, and combined with the characteristics of the event, we add the constraint conditions to each sieve to improve the accuracy of each sieve. We use this module to carry on experiment for object elements of the event. Compared with machine learning method based on C4.5 decision tree, it has a very big enhancement on the performance.\",\"PeriodicalId\":312629,\"journal\":{\"name\":\"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE.2015.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE.2015.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

共同参照解析是自然语言处理中的关键问题之一,它可以消除面向事件的自然语言处理中事件的不确定性问题,对事件的上层应用具有重要意义。本文构建了面向事件的多通道共参解析筛选模块,并结合事件的特点,在每个筛选中加入约束条件,提高每个筛选的精度。我们利用该模块对事件的对象元素进行实验。与基于C4.5决策树的机器学习方法相比,在性能上有很大的提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Event-Oriented Multi-pass Sieve Module for Coreference Resolution
Coreference resolution is one of the key issues in the natural language processing, it can eliminate uncertain problems of event in the event-oriented natural language processing, and that is important for the upper application of event. This paper builds an event-oriented multi-pass sieve module for coreference resolution, and combined with the characteristics of the event, we add the constraint conditions to each sieve to improve the accuracy of each sieve. We use this module to carry on experiment for object elements of the event. Compared with machine learning method based on C4.5 decision tree, it has a very big enhancement on the performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信