J. Myers, J. Hejase, Junyan Tang, S. Chun, W. Becker, D. Dreps
{"title":"高速通道紧密倾斜模块引脚场中PCB布线的信号完整性考虑","authors":"J. Myers, J. Hejase, Junyan Tang, S. Chun, W. Becker, D. Dreps","doi":"10.1109/EPEPS47316.2019.193216","DOIUrl":null,"url":null,"abstract":"Effects of PCB wiring in tightly pitched module pin fields on high speed channel signal integrity are evaluated in this paper. Three different module orthogonal pin pitches are considered: 0.8mm, 1.06mm and 1.27mm. Each of the pin pitch scenarios is represented through corresponding PCB via and PCB pin area wiring models. Frequency domain SI metrics, at 16GHz, of a full end to end channel including the different tightly pitched module PCB wiring scenarios are quantified, compared and discussed. Additionally, full channel time domain eye simulations carried out at 32Gb/s are used to evaluate effects on eye opening and correlate with the frequency domain observations.","PeriodicalId":304228,"journal":{"name":"2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signal Integrity Considerations of PCB Wiring in Tightly Pitched Module Pin Fields of High Speed Channels\",\"authors\":\"J. Myers, J. Hejase, Junyan Tang, S. Chun, W. Becker, D. Dreps\",\"doi\":\"10.1109/EPEPS47316.2019.193216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effects of PCB wiring in tightly pitched module pin fields on high speed channel signal integrity are evaluated in this paper. Three different module orthogonal pin pitches are considered: 0.8mm, 1.06mm and 1.27mm. Each of the pin pitch scenarios is represented through corresponding PCB via and PCB pin area wiring models. Frequency domain SI metrics, at 16GHz, of a full end to end channel including the different tightly pitched module PCB wiring scenarios are quantified, compared and discussed. Additionally, full channel time domain eye simulations carried out at 32Gb/s are used to evaluate effects on eye opening and correlate with the frequency domain observations.\",\"PeriodicalId\":304228,\"journal\":{\"name\":\"2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPS47316.2019.193216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 28th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS47316.2019.193216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Signal Integrity Considerations of PCB Wiring in Tightly Pitched Module Pin Fields of High Speed Channels
Effects of PCB wiring in tightly pitched module pin fields on high speed channel signal integrity are evaluated in this paper. Three different module orthogonal pin pitches are considered: 0.8mm, 1.06mm and 1.27mm. Each of the pin pitch scenarios is represented through corresponding PCB via and PCB pin area wiring models. Frequency domain SI metrics, at 16GHz, of a full end to end channel including the different tightly pitched module PCB wiring scenarios are quantified, compared and discussed. Additionally, full channel time domain eye simulations carried out at 32Gb/s are used to evaluate effects on eye opening and correlate with the frequency domain observations.