Anuradha Mudalige, Heng Wu, Xiongfei Wang, M. Langwasser, M. Liserre
{"title":"无功控制回路对电网频率摄动图的影响","authors":"Anuradha Mudalige, Heng Wu, Xiongfei Wang, M. Langwasser, M. Liserre","doi":"10.1109/PEDG56097.2023.10215192","DOIUrl":null,"url":null,"abstract":"Grid Forming (GFM) inverters are valuable assets for enabling sustainable power systems. Network Frequency Perturbation (NFP) plot could serve as a valuable tool for evaluating the behaviour of a GFM inverter’s active power control (APC) loop. NFP plot has been recommended in the recent grid code modification by National Grid ESO as a document to be submitted by a grid forming (GFM) plant operator for compliance testing purposes. In a grid connected GFM inverter, it is well known that the APC and reactive power control (RPC) loops are inherently coupled with each other. However, state of the art guidelines on producing and interpreting an NFP plot have completely disregarded the influence of this coupling effect in an attempt to simplify the analysis. In this paper, a systematic analysis is presented which identifies the conditions under which such a simplification could be valid, or could otherwise introduce significant influence on the NFP plot. Simulation results are presented validating the theoretical analysis.","PeriodicalId":386920,"journal":{"name":"2023 IEEE 14th International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the Reactive Power Control Loop on Network Frequency Perturbation Plot\",\"authors\":\"Anuradha Mudalige, Heng Wu, Xiongfei Wang, M. Langwasser, M. Liserre\",\"doi\":\"10.1109/PEDG56097.2023.10215192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grid Forming (GFM) inverters are valuable assets for enabling sustainable power systems. Network Frequency Perturbation (NFP) plot could serve as a valuable tool for evaluating the behaviour of a GFM inverter’s active power control (APC) loop. NFP plot has been recommended in the recent grid code modification by National Grid ESO as a document to be submitted by a grid forming (GFM) plant operator for compliance testing purposes. In a grid connected GFM inverter, it is well known that the APC and reactive power control (RPC) loops are inherently coupled with each other. However, state of the art guidelines on producing and interpreting an NFP plot have completely disregarded the influence of this coupling effect in an attempt to simplify the analysis. In this paper, a systematic analysis is presented which identifies the conditions under which such a simplification could be valid, or could otherwise introduce significant influence on the NFP plot. Simulation results are presented validating the theoretical analysis.\",\"PeriodicalId\":386920,\"journal\":{\"name\":\"2023 IEEE 14th International Symposium on Power Electronics for Distributed Generation Systems (PEDG)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 14th International Symposium on Power Electronics for Distributed Generation Systems (PEDG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDG56097.2023.10215192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 14th International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDG56097.2023.10215192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of the Reactive Power Control Loop on Network Frequency Perturbation Plot
Grid Forming (GFM) inverters are valuable assets for enabling sustainable power systems. Network Frequency Perturbation (NFP) plot could serve as a valuable tool for evaluating the behaviour of a GFM inverter’s active power control (APC) loop. NFP plot has been recommended in the recent grid code modification by National Grid ESO as a document to be submitted by a grid forming (GFM) plant operator for compliance testing purposes. In a grid connected GFM inverter, it is well known that the APC and reactive power control (RPC) loops are inherently coupled with each other. However, state of the art guidelines on producing and interpreting an NFP plot have completely disregarded the influence of this coupling effect in an attempt to simplify the analysis. In this paper, a systematic analysis is presented which identifies the conditions under which such a simplification could be valid, or could otherwise introduce significant influence on the NFP plot. Simulation results are presented validating the theoretical analysis.