记忆内置自诊断设计与症候群压缩

Rei-Fu Huang, Chin-Lung Su, Cheng-Wen Wu, Yeong-Jar Chang, Wen-Ching Wu
{"title":"记忆内置自诊断设计与症候群压缩","authors":"Rei-Fu Huang, Chin-Lung Su, Cheng-Wen Wu, Yeong-Jar Chang, Wen-Ching Wu","doi":"10.1109/DBT.2004.1408968","DOIUrl":null,"url":null,"abstract":"We present a memory built-in self-diagnosis (BISD) design that incorporates a fault syndrome compression scheme. We also have developed efficient faulty-word, faulty-row, and faulty-column identification methods, which have been incorporated in our new BISD design. Our approach reduces the amount of data that need to be transmitted from the chip under test to the automatic test equipment (ATE). It therefore reduces the ATE occupation time and the required ATE capture memory space. It also simplifies the analysis that has to be performed on the ATE. Simulation results for memories under various fault pattern distributions show that in most cases the data can be compressed to less than 6% of its original size.","PeriodicalId":407554,"journal":{"name":"Proceedings. 2004 IEEE International Workshop on Current and Defect Based Testing (IEEE Cat. No.04EX1004)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A memory built-in self-diagnosis design with syndrome compression\",\"authors\":\"Rei-Fu Huang, Chin-Lung Su, Cheng-Wen Wu, Yeong-Jar Chang, Wen-Ching Wu\",\"doi\":\"10.1109/DBT.2004.1408968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a memory built-in self-diagnosis (BISD) design that incorporates a fault syndrome compression scheme. We also have developed efficient faulty-word, faulty-row, and faulty-column identification methods, which have been incorporated in our new BISD design. Our approach reduces the amount of data that need to be transmitted from the chip under test to the automatic test equipment (ATE). It therefore reduces the ATE occupation time and the required ATE capture memory space. It also simplifies the analysis that has to be performed on the ATE. Simulation results for memories under various fault pattern distributions show that in most cases the data can be compressed to less than 6% of its original size.\",\"PeriodicalId\":407554,\"journal\":{\"name\":\"Proceedings. 2004 IEEE International Workshop on Current and Defect Based Testing (IEEE Cat. No.04EX1004)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2004 IEEE International Workshop on Current and Defect Based Testing (IEEE Cat. No.04EX1004)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DBT.2004.1408968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2004 IEEE International Workshop on Current and Defect Based Testing (IEEE Cat. No.04EX1004)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DBT.2004.1408968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一种内存内置自诊断(BISD)设计,该设计包含故障综合征压缩方案。我们还开发了有效的错误字、错误行和错误列识别方法,这些方法已被纳入我们新的bsd设计中。我们的方法减少了需要从被测芯片传输到自动测试设备(ATE)的数据量。因此它减少了ATE占用时间和所需的ATE捕获内存空间。它还简化了必须在ATE上执行的分析。对各种故障模式分布下的存储器的仿真结果表明,在大多数情况下,数据可以压缩到原始大小的6%以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A memory built-in self-diagnosis design with syndrome compression
We present a memory built-in self-diagnosis (BISD) design that incorporates a fault syndrome compression scheme. We also have developed efficient faulty-word, faulty-row, and faulty-column identification methods, which have been incorporated in our new BISD design. Our approach reduces the amount of data that need to be transmitted from the chip under test to the automatic test equipment (ATE). It therefore reduces the ATE occupation time and the required ATE capture memory space. It also simplifies the analysis that has to be performed on the ATE. Simulation results for memories under various fault pattern distributions show that in most cases the data can be compressed to less than 6% of its original size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信