布尔可满足性问题的改进神经网络

M. Mejía-Lavalle, J. Ruiz, Joaquín O. Pérez, Marilu S. Cervantes
{"title":"布尔可满足性问题的改进神经网络","authors":"M. Mejía-Lavalle, J. Ruiz, Joaquín O. Pérez, Marilu S. Cervantes","doi":"10.1109/ICMEAE.2015.46","DOIUrl":null,"url":null,"abstract":"A modified Hopfield Artificial Neural Network is proposed to solve effectively and efficiently Boolean Satisfiability (SAT) NP-hard problems. The proposed Neural Network is compared against other traditional methods employed in this field, such as Greedy SAT and Genetic Algorithms for SAT. The results show that the proposed network represents a good alternative given their output quality and response time speed.","PeriodicalId":226698,"journal":{"name":"2015 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modified Neural Net for the Boolean Satisfiability Problem\",\"authors\":\"M. Mejía-Lavalle, J. Ruiz, Joaquín O. Pérez, Marilu S. Cervantes\",\"doi\":\"10.1109/ICMEAE.2015.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A modified Hopfield Artificial Neural Network is proposed to solve effectively and efficiently Boolean Satisfiability (SAT) NP-hard problems. The proposed Neural Network is compared against other traditional methods employed in this field, such as Greedy SAT and Genetic Algorithms for SAT. The results show that the proposed network represents a good alternative given their output quality and response time speed.\",\"PeriodicalId\":226698,\"journal\":{\"name\":\"2015 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEAE.2015.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEAE.2015.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对布尔可满足性np困难问题,提出了一种改进的Hopfield人工神经网络。将所提出的神经网络与该领域使用的其他传统方法(如贪心SAT和遗传算法)进行了比较。结果表明,考虑到其输出质量和响应时间速度,所提出的网络是一个很好的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified Neural Net for the Boolean Satisfiability Problem
A modified Hopfield Artificial Neural Network is proposed to solve effectively and efficiently Boolean Satisfiability (SAT) NP-hard problems. The proposed Neural Network is compared against other traditional methods employed in this field, such as Greedy SAT and Genetic Algorithms for SAT. The results show that the proposed network represents a good alternative given their output quality and response time speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信