{"title":"具有规定分量界和排序的单变量分布的极大极小误差选择","authors":"A. J. Goldman","doi":"10.6028/JRES.073B.022","DOIUrl":null,"url":null,"abstract":"The top ic treated is that of fi nding a re producib le, plaus ible and computationall y s imple method of selecting a di screte frequency di s tribution with a prescr ib ed rankin g of its components and pre· scrib ed upper and lowe r bounds on these compone nt. s . The problem is s hown to be tract.ab le when a minimax error selection c rit e ri on is e mployed, and \"error \" is measure d by maximum absolut e devia ti on a mong co mpone nts. In thi s case one obt.ains a lin ea r progra m of a specia l form ad mittin g expli c it solutio n.","PeriodicalId":166823,"journal":{"name":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1969-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimax Error Selection of a Univariate Distribution With Prescribed Componentwise Bounds and Ranking\",\"authors\":\"A. J. Goldman\",\"doi\":\"10.6028/JRES.073B.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The top ic treated is that of fi nding a re producib le, plaus ible and computationall y s imple method of selecting a di screte frequency di s tribution with a prescr ib ed rankin g of its components and pre· scrib ed upper and lowe r bounds on these compone nt. s . The problem is s hown to be tract.ab le when a minimax error selection c rit e ri on is e mployed, and \\\"error \\\" is measure d by maximum absolut e devia ti on a mong co mpone nts. In thi s case one obt.ains a lin ea r progra m of a specia l form ad mittin g expli c it solutio n.\",\"PeriodicalId\":166823,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1969-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/JRES.073B.022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.073B.022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minimax Error Selection of a Univariate Distribution With Prescribed Componentwise Bounds and Ranking
The top ic treated is that of fi nding a re producib le, plaus ible and computationall y s imple method of selecting a di screte frequency di s tribution with a prescr ib ed rankin g of its components and pre· scrib ed upper and lowe r bounds on these compone nt. s . The problem is s hown to be tract.ab le when a minimax error selection c rit e ri on is e mployed, and "error " is measure d by maximum absolut e devia ti on a mong co mpone nts. In thi s case one obt.ains a lin ea r progra m of a specia l form ad mittin g expli c it solutio n.