含一维光子晶体的薄膜太阳能电池角相关光学特性的理论评价

Ç. Çetinkaya
{"title":"含一维光子晶体的薄膜太阳能电池角相关光学特性的理论评价","authors":"Ç. Çetinkaya","doi":"10.54287/gujsa.1129794","DOIUrl":null,"url":null,"abstract":"The effective use of photonic-based integrated systems, whose optical properties can be tuned through light management engineering in optoelectronic devices, constitutes the backbone of today's technology. Especially in systems such as CdTe-based solar cells with well-known and high efficiency, one-dimensional photonic crystal designs emerge as an effective way to provide an electronic or optical improvement. With this intention, in this study, the optical spectra of the MgF2/MoO3 one-dimensional photonic crystal integrated into the CdTe solar cell to improve photon harvesting were investigated theoretically under both bottom and top illumination according to the incidence angle of the electromagnetic wave. The transfer matrix method was used to calculate the angle dependent optical spectra. Since the electromagnetic wave interacts directly with the photonic crystal, it has been observed that the optical properties are more dependent on the angle under the top illumination compared to the bottom one. For top illumination, up to 30°, there is no significant change in reflection in the photonic band gap, but reflection drops significantly at incidence angles greater than 30°. Also, increasing the angle indicates that the low wavelength tail of the photonic band gap shifts to shorter wavelengths and enters the visible region. In the photonic band gap, for angles greater than 45°, the probability of absorption increases significantly as more electromagnetic waves enter the structure. For the bottom illumination, there is no serious dependence on the angle of incidence. For 75°, there is an increase in reflection for all wavelengths and, therefore, a decrease in absorption.","PeriodicalId":134301,"journal":{"name":"Gazi University Journal of Science Part A: Engineering and Innovation","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Evaluation of Angle-Dependent Optical Properties of a Thin Film Solar Cell including One-Dimension Photonic Crystals\",\"authors\":\"Ç. Çetinkaya\",\"doi\":\"10.54287/gujsa.1129794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effective use of photonic-based integrated systems, whose optical properties can be tuned through light management engineering in optoelectronic devices, constitutes the backbone of today's technology. Especially in systems such as CdTe-based solar cells with well-known and high efficiency, one-dimensional photonic crystal designs emerge as an effective way to provide an electronic or optical improvement. With this intention, in this study, the optical spectra of the MgF2/MoO3 one-dimensional photonic crystal integrated into the CdTe solar cell to improve photon harvesting were investigated theoretically under both bottom and top illumination according to the incidence angle of the electromagnetic wave. The transfer matrix method was used to calculate the angle dependent optical spectra. Since the electromagnetic wave interacts directly with the photonic crystal, it has been observed that the optical properties are more dependent on the angle under the top illumination compared to the bottom one. For top illumination, up to 30°, there is no significant change in reflection in the photonic band gap, but reflection drops significantly at incidence angles greater than 30°. Also, increasing the angle indicates that the low wavelength tail of the photonic band gap shifts to shorter wavelengths and enters the visible region. In the photonic band gap, for angles greater than 45°, the probability of absorption increases significantly as more electromagnetic waves enter the structure. For the bottom illumination, there is no serious dependence on the angle of incidence. For 75°, there is an increase in reflection for all wavelengths and, therefore, a decrease in absorption.\",\"PeriodicalId\":134301,\"journal\":{\"name\":\"Gazi University Journal of Science Part A: Engineering and Innovation\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gazi University Journal of Science Part A: Engineering and Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54287/gujsa.1129794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gazi University Journal of Science Part A: Engineering and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54287/gujsa.1129794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有效利用基于光子的集成系统,其光学特性可以通过光电器件中的光管理工程进行调整,构成了当今技术的支柱。特别是在以碲化镉为基础的太阳能电池系统中,一维光子晶体设计成为提供电子或光学改进的有效方法。为此,本研究根据电磁波入射角,对集成到CdTe太阳能电池中的MgF2/MoO3一维光子晶体在上下两种照明下的光谱进行了理论研究。采用传递矩阵法计算角度相关光谱。由于电磁波直接与光子晶体相互作用,我们观察到光子晶体的光学性质在顶部光照下比在底部光照下更依赖于角度。对于顶部照明,在30°以内,光子带隙内的反射率没有明显变化,但在入射角大于30°时,反射率明显下降。同时,增加角度表明光子带隙的低波长尾部向短波方向移动,进入可见光区。在光子带隙中,当角度大于45°时,随着更多的电磁波进入结构,吸收的概率显著增加。对于底部照明,没有严重依赖入射角。对于75°角,所有波长的反射都增加,因此吸收减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical Evaluation of Angle-Dependent Optical Properties of a Thin Film Solar Cell including One-Dimension Photonic Crystals
The effective use of photonic-based integrated systems, whose optical properties can be tuned through light management engineering in optoelectronic devices, constitutes the backbone of today's technology. Especially in systems such as CdTe-based solar cells with well-known and high efficiency, one-dimensional photonic crystal designs emerge as an effective way to provide an electronic or optical improvement. With this intention, in this study, the optical spectra of the MgF2/MoO3 one-dimensional photonic crystal integrated into the CdTe solar cell to improve photon harvesting were investigated theoretically under both bottom and top illumination according to the incidence angle of the electromagnetic wave. The transfer matrix method was used to calculate the angle dependent optical spectra. Since the electromagnetic wave interacts directly with the photonic crystal, it has been observed that the optical properties are more dependent on the angle under the top illumination compared to the bottom one. For top illumination, up to 30°, there is no significant change in reflection in the photonic band gap, but reflection drops significantly at incidence angles greater than 30°. Also, increasing the angle indicates that the low wavelength tail of the photonic band gap shifts to shorter wavelengths and enters the visible region. In the photonic band gap, for angles greater than 45°, the probability of absorption increases significantly as more electromagnetic waves enter the structure. For the bottom illumination, there is no serious dependence on the angle of incidence. For 75°, there is an increase in reflection for all wavelengths and, therefore, a decrease in absorption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信