一类未知扰动非线性系统的Takagi-Sugeno模型状态估计

D. Krokavec, A. Filasová, V. Hladký
{"title":"一类未知扰动非线性系统的Takagi-Sugeno模型状态估计","authors":"D. Krokavec, A. Filasová, V. Hladký","doi":"10.1109/CARPATHIANCC.2012.6228675","DOIUrl":null,"url":null,"abstract":"The paper presents conditions suitable in design of state observers for a class of continuous-time nonlinear systems with unknown input, represented by Takagi-Sugeno models with unmeasurable premise variables. Based on Lyapunov inequality, the conditions are outlined in the terms of linear matrix inequalities to possess a stable structure closest to optimal asymptotic properties. Simulation results illustrate the design procedure and demonstrate the basic performances of the proposed observer design method.","PeriodicalId":334936,"journal":{"name":"Proceedings of the 13th International Carpathian Control Conference (ICCC)","volume":"26 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Takagi-Sugeno model-based state estimation for one class of nonlinear systems with unknown disturbances\",\"authors\":\"D. Krokavec, A. Filasová, V. Hladký\",\"doi\":\"10.1109/CARPATHIANCC.2012.6228675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents conditions suitable in design of state observers for a class of continuous-time nonlinear systems with unknown input, represented by Takagi-Sugeno models with unmeasurable premise variables. Based on Lyapunov inequality, the conditions are outlined in the terms of linear matrix inequalities to possess a stable structure closest to optimal asymptotic properties. Simulation results illustrate the design procedure and demonstrate the basic performances of the proposed observer design method.\",\"PeriodicalId\":334936,\"journal\":{\"name\":\"Proceedings of the 13th International Carpathian Control Conference (ICCC)\",\"volume\":\"26 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Carpathian Control Conference (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CARPATHIANCC.2012.6228675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Carpathian Control Conference (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CARPATHIANCC.2012.6228675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了一类具有不可测前提变量的Takagi-Sugeno模型的未知输入连续非线性系统的状态观测器设计的适用条件。基于Lyapunov不等式,用线性矩阵不等式的形式给出了具有最优渐近性质的稳定结构的条件。仿真结果说明了设计过程,并验证了所提观测器设计方法的基本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Takagi-Sugeno model-based state estimation for one class of nonlinear systems with unknown disturbances
The paper presents conditions suitable in design of state observers for a class of continuous-time nonlinear systems with unknown input, represented by Takagi-Sugeno models with unmeasurable premise variables. Based on Lyapunov inequality, the conditions are outlined in the terms of linear matrix inequalities to possess a stable structure closest to optimal asymptotic properties. Simulation results illustrate the design procedure and demonstrate the basic performances of the proposed observer design method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信