用于有效分析晶体管可变性的线性回归技术

Dimitrios Stamoulis, D. Rodopoulos, B. Meyer, D. Soudris, Z. Zilic
{"title":"用于有效分析晶体管可变性的线性回归技术","authors":"Dimitrios Stamoulis, D. Rodopoulos, B. Meyer, D. Soudris, Z. Zilic","doi":"10.1109/ICECS.2014.7049973","DOIUrl":null,"url":null,"abstract":"Prior art on time-zero/-dependent variability shows its importance for digital system reliability throughout a typical integrated circuit (IC) lifetime. Timing analysis results could be questionable if the impact of such variations is not taken properly into consideration. Modern models can accurately capture transistor variability but they suffer from prolonged execution times. In this paper, we employ linear regression analysis to accelerate transistor variability estimation. Compared to commercial transistor-level Static Timing Analysis (STA) tools, we achieve a 4.63× average speedup and a 3.56× average memory usage reduction for standard cells and ISCAS85 benchmark circuits, with negligible accuracy degradation.","PeriodicalId":133747,"journal":{"name":"2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Linear regression techniques for efficient analysis of transistor variability\",\"authors\":\"Dimitrios Stamoulis, D. Rodopoulos, B. Meyer, D. Soudris, Z. Zilic\",\"doi\":\"10.1109/ICECS.2014.7049973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prior art on time-zero/-dependent variability shows its importance for digital system reliability throughout a typical integrated circuit (IC) lifetime. Timing analysis results could be questionable if the impact of such variations is not taken properly into consideration. Modern models can accurately capture transistor variability but they suffer from prolonged execution times. In this paper, we employ linear regression analysis to accelerate transistor variability estimation. Compared to commercial transistor-level Static Timing Analysis (STA) tools, we achieve a 4.63× average speedup and a 3.56× average memory usage reduction for standard cells and ISCAS85 benchmark circuits, with negligible accuracy degradation.\",\"PeriodicalId\":133747,\"journal\":{\"name\":\"2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECS.2014.7049973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2014.7049973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

现有技术的时间零/依赖变异性显示其重要性的数字系统可靠性在整个典型的集成电路(IC)寿命。如果不适当地考虑这些变化的影响,时间分析结果可能是可疑的。现代模型可以准确地捕捉晶体管的可变性,但它们的执行时间较长。在本文中,我们采用线性回归分析来加速晶体管可变性估计。与商用晶体管级静态时序分析(STA)工具相比,我们在标准单元和ISCAS85基准电路中实现了4.63倍的平均加速和3.56倍的平均内存使用减少,而精度下降可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear regression techniques for efficient analysis of transistor variability
Prior art on time-zero/-dependent variability shows its importance for digital system reliability throughout a typical integrated circuit (IC) lifetime. Timing analysis results could be questionable if the impact of such variations is not taken properly into consideration. Modern models can accurately capture transistor variability but they suffer from prolonged execution times. In this paper, we employ linear regression analysis to accelerate transistor variability estimation. Compared to commercial transistor-level Static Timing Analysis (STA) tools, we achieve a 4.63× average speedup and a 3.56× average memory usage reduction for standard cells and ISCAS85 benchmark circuits, with negligible accuracy degradation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信