{"title":"用于M-QAM载波恢复的SiGe频率四倍器","authors":"A. Ulusoy, Gang Liu, A. Trasser, H. Schumacher","doi":"10.1109/SMIC.2010.5422848","DOIUrl":null,"url":null,"abstract":"In this paper a frequency quadrupler circuit, integrated with a commercially available SiGe HBT technology (fT/fmax¿80/90 GHz) is presented. The quadrupler consists of two Gilbert cell mixers stacked as squarers. The measured maximum conversion gain is 0.6 dB for an input level of -9 dBm. The circuit is optimized for M-QAM carrier recovery, and the performance was tested by applying QPSK and 16QAM modulated signals with 4 Gbit/s data rate at the input. Both experimental and simulated results are presented. The fully integrated chip is operated from a single 2.5V DC supply and draws 22.3 mA current.","PeriodicalId":404957,"journal":{"name":"2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A SiGe frequency quadrupler for M-QAM carrier recovery\",\"authors\":\"A. Ulusoy, Gang Liu, A. Trasser, H. Schumacher\",\"doi\":\"10.1109/SMIC.2010.5422848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a frequency quadrupler circuit, integrated with a commercially available SiGe HBT technology (fT/fmax¿80/90 GHz) is presented. The quadrupler consists of two Gilbert cell mixers stacked as squarers. The measured maximum conversion gain is 0.6 dB for an input level of -9 dBm. The circuit is optimized for M-QAM carrier recovery, and the performance was tested by applying QPSK and 16QAM modulated signals with 4 Gbit/s data rate at the input. Both experimental and simulated results are presented. The fully integrated chip is operated from a single 2.5V DC supply and draws 22.3 mA current.\",\"PeriodicalId\":404957,\"journal\":{\"name\":\"2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMIC.2010.5422848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMIC.2010.5422848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A SiGe frequency quadrupler for M-QAM carrier recovery
In this paper a frequency quadrupler circuit, integrated with a commercially available SiGe HBT technology (fT/fmax¿80/90 GHz) is presented. The quadrupler consists of two Gilbert cell mixers stacked as squarers. The measured maximum conversion gain is 0.6 dB for an input level of -9 dBm. The circuit is optimized for M-QAM carrier recovery, and the performance was tested by applying QPSK and 16QAM modulated signals with 4 Gbit/s data rate at the input. Both experimental and simulated results are presented. The fully integrated chip is operated from a single 2.5V DC supply and draws 22.3 mA current.