矩阵法由图法推导出SI电路的解

D. Matousek, Bohumil Brtnik
{"title":"矩阵法由图法推导出SI电路的解","authors":"D. Matousek, Bohumil Brtnik","doi":"10.1109/AE.2014.7011700","DOIUrl":null,"url":null,"abstract":"This paper deals with the symbolic solution of the switched current circuits. As is described, the general principle of the transformation graph method can be used for finding admittance matrix of medium size networks and/or sub-networks. The admittance matrix is assembled from four submatrices after reduction each submatrix by partial reduction formula. There is described principle for decomposition general reduction formula into partial reduction formula. Thus solving is more clearly than reduction matrices after composition from submatrices.","PeriodicalId":149779,"journal":{"name":"2014 International Conference on Applied Electronics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix method derived from graph method of SI circuit solution\",\"authors\":\"D. Matousek, Bohumil Brtnik\",\"doi\":\"10.1109/AE.2014.7011700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the symbolic solution of the switched current circuits. As is described, the general principle of the transformation graph method can be used for finding admittance matrix of medium size networks and/or sub-networks. The admittance matrix is assembled from four submatrices after reduction each submatrix by partial reduction formula. There is described principle for decomposition general reduction formula into partial reduction formula. Thus solving is more clearly than reduction matrices after composition from submatrices.\",\"PeriodicalId\":149779,\"journal\":{\"name\":\"2014 International Conference on Applied Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Applied Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AE.2014.7011700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Applied Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AE.2014.7011700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了开关电流电路的符号解。如前所述,变换图法的一般原理可用于求中等规模网络和/或子网络的导纳矩阵。导纳矩阵由四个子矩阵组成,每个子矩阵通过部分约简公式进行约简。描述了一般约简公式分解为部分约简公式的原理。因此,由子矩阵组成后,求解比约简矩阵更清晰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix method derived from graph method of SI circuit solution
This paper deals with the symbolic solution of the switched current circuits. As is described, the general principle of the transformation graph method can be used for finding admittance matrix of medium size networks and/or sub-networks. The admittance matrix is assembled from four submatrices after reduction each submatrix by partial reduction formula. There is described principle for decomposition general reduction formula into partial reduction formula. Thus solving is more clearly than reduction matrices after composition from submatrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信