{"title":"内禀面积阵列ic:什么,为什么,以及如何","authors":"P. Dehkordi, C. Tan, D. Bouldin","doi":"10.1109/MCMC.1997.569355","DOIUrl":null,"url":null,"abstract":"Area-array bonding technology (i.e. flip-chip, C4) was pioneered by IBM in the late 1960's as an alternative to periphery bonding technology (i.e. wire-bond). In recent years, several commercial companies have started offering bumping and flip-chip services. Flip-chip technology is expected to grow at at compound annual growth rate of 38% through the year 2001. The purpose of this paper is to address the IC design issues and alternatives that are presently being used for area-array bonding technology and show the impact of these design issues at the system level.","PeriodicalId":412444,"journal":{"name":"Proceedings 1997 IEEE Multi-Chip Module Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Intrinsic area array ICs: what, why, and how\",\"authors\":\"P. Dehkordi, C. Tan, D. Bouldin\",\"doi\":\"10.1109/MCMC.1997.569355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Area-array bonding technology (i.e. flip-chip, C4) was pioneered by IBM in the late 1960's as an alternative to periphery bonding technology (i.e. wire-bond). In recent years, several commercial companies have started offering bumping and flip-chip services. Flip-chip technology is expected to grow at at compound annual growth rate of 38% through the year 2001. The purpose of this paper is to address the IC design issues and alternatives that are presently being used for area-array bonding technology and show the impact of these design issues at the system level.\",\"PeriodicalId\":412444,\"journal\":{\"name\":\"Proceedings 1997 IEEE Multi-Chip Module Conference\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1997 IEEE Multi-Chip Module Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCMC.1997.569355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1997 IEEE Multi-Chip Module Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCMC.1997.569355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Area-array bonding technology (i.e. flip-chip, C4) was pioneered by IBM in the late 1960's as an alternative to periphery bonding technology (i.e. wire-bond). In recent years, several commercial companies have started offering bumping and flip-chip services. Flip-chip technology is expected to grow at at compound annual growth rate of 38% through the year 2001. The purpose of this paper is to address the IC design issues and alternatives that are presently being used for area-array bonding technology and show the impact of these design issues at the system level.