拉普拉斯驱动的Softmax概率在图像重构中的噪点检测

I. Stanković, M. Brajović, L. Stanković, M. Daković
{"title":"拉普拉斯驱动的Softmax概率在图像重构中的噪点检测","authors":"I. Stanković, M. Brajović, L. Stanković, M. Daković","doi":"10.1109/TELFOR56187.2022.9983707","DOIUrl":null,"url":null,"abstract":"The paper presents a modified tool for detection of noise in images when the pixel intensity of noise is within the pixel range. The detection is based on a combination of an edge-detection tool, i.e. the Laplacian filter, and the Softmax function. Although considered as an edge detection technique in the digital image processing, the Laplacian can be efficiently used in the determining noisy pixels. The decision–making threshold is then found using the Softmax function, which is based on the probability of the pixel intensity, which decides if a pixel should be declared as corrupted. The reconstruction is then performed using a gradient-based algorithm. The method is tested and verified through examples.","PeriodicalId":277553,"journal":{"name":"2022 30th Telecommunications Forum (TELFOR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laplacian-Driven Softmax Probability for Noisy Pixel Detection in Image Reconstruction\",\"authors\":\"I. Stanković, M. Brajović, L. Stanković, M. Daković\",\"doi\":\"10.1109/TELFOR56187.2022.9983707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a modified tool for detection of noise in images when the pixel intensity of noise is within the pixel range. The detection is based on a combination of an edge-detection tool, i.e. the Laplacian filter, and the Softmax function. Although considered as an edge detection technique in the digital image processing, the Laplacian can be efficiently used in the determining noisy pixels. The decision–making threshold is then found using the Softmax function, which is based on the probability of the pixel intensity, which decides if a pixel should be declared as corrupted. The reconstruction is then performed using a gradient-based algorithm. The method is tested and verified through examples.\",\"PeriodicalId\":277553,\"journal\":{\"name\":\"2022 30th Telecommunications Forum (TELFOR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Telecommunications Forum (TELFOR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELFOR56187.2022.9983707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Telecommunications Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR56187.2022.9983707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种改进的图像噪声检测工具,用于噪声的像素强度在像素范围内时的图像噪声检测。检测是基于边缘检测工具,即拉普拉斯滤波器和Softmax函数的组合。虽然在数字图像处理中被认为是一种边缘检测技术,但拉普拉斯算子可以有效地用于确定噪声像素。然后使用Softmax函数找到决策阈值,该函数基于像素强度的概率,它决定像素是否应该被声明为损坏。然后使用基于梯度的算法进行重建。通过实例对该方法进行了测试和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laplacian-Driven Softmax Probability for Noisy Pixel Detection in Image Reconstruction
The paper presents a modified tool for detection of noise in images when the pixel intensity of noise is within the pixel range. The detection is based on a combination of an edge-detection tool, i.e. the Laplacian filter, and the Softmax function. Although considered as an edge detection technique in the digital image processing, the Laplacian can be efficiently used in the determining noisy pixels. The decision–making threshold is then found using the Softmax function, which is based on the probability of the pixel intensity, which decides if a pixel should be declared as corrupted. The reconstruction is then performed using a gradient-based algorithm. The method is tested and verified through examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信