{"title":"基于0.13 μm CMOS工艺的栅极驱动nmos电源轨ESD钳位电路优化","authors":"Shih-Hung Chen, M. Ker","doi":"10.1109/ICECS.2008.4674941","DOIUrl":null,"url":null,"abstract":"NMOS-based power-rail ESD clamp circuits with gate-driven mechanism have been widely used to obtain the desired ESD protection ability. All of them are based on a similar circuit scheme with 3-stage inverters to drive the ESD clamp NMOS transistor with large device dimension. In this work, the designs with 3-stage-inverter and 1-stage-inverter controlling circuits have been studied to verify the optimal circuit schemes in NMOS-based power-rail ESD clamp circuits.","PeriodicalId":404629,"journal":{"name":"2008 15th IEEE International Conference on Electronics, Circuits and Systems","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Optimization on NMOS-based power-rail ESD clamp circuits with gate-driven mechanism in a 0.13-μm CMOS technology\",\"authors\":\"Shih-Hung Chen, M. Ker\",\"doi\":\"10.1109/ICECS.2008.4674941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NMOS-based power-rail ESD clamp circuits with gate-driven mechanism have been widely used to obtain the desired ESD protection ability. All of them are based on a similar circuit scheme with 3-stage inverters to drive the ESD clamp NMOS transistor with large device dimension. In this work, the designs with 3-stage-inverter and 1-stage-inverter controlling circuits have been studied to verify the optimal circuit schemes in NMOS-based power-rail ESD clamp circuits.\",\"PeriodicalId\":404629,\"journal\":{\"name\":\"2008 15th IEEE International Conference on Electronics, Circuits and Systems\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 15th IEEE International Conference on Electronics, Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECS.2008.4674941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 15th IEEE International Conference on Electronics, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2008.4674941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization on NMOS-based power-rail ESD clamp circuits with gate-driven mechanism in a 0.13-μm CMOS technology
NMOS-based power-rail ESD clamp circuits with gate-driven mechanism have been widely used to obtain the desired ESD protection ability. All of them are based on a similar circuit scheme with 3-stage inverters to drive the ESD clamp NMOS transistor with large device dimension. In this work, the designs with 3-stage-inverter and 1-stage-inverter controlling circuits have been studied to verify the optimal circuit schemes in NMOS-based power-rail ESD clamp circuits.