低压和温度补偿环压控振荡器设计

Guoying Wu, Kexu Sun, Shita Guo, Tao Zhang, Tianzuo Xi, Rui Wang, P. Gui
{"title":"低压和温度补偿环压控振荡器设计","authors":"Guoying Wu, Kexu Sun, Shita Guo, Tao Zhang, Tianzuo Xi, Rui Wang, P. Gui","doi":"10.1109/DCAS.2014.6965321","DOIUrl":null,"url":null,"abstract":"A low-voltage, two-stage ring voltage-controlled oscillator (VCO) which can tolerate temperature variation is presented in this paper. Designed using a 0.13 μm CMOS technology, this VCO is capable of operating at 1-V power supply voltage not only for low power consumption, but also to reduce hot-carrier effects and improve reliability and lifetime. It incorporates coarse and fine frequency tuning mainly for tolerance of process variations while achieving small control-voltage-to-frequency gain and enough tuning range of the VCO. Most importantly, a new temperature compensation technique which is suitable for low power supply voltage design is proposed to enable continuous operation of the VCO in variable ambient temperatures environment. Simulations show that with the proposed techniques, the VCO can tolerate process variations, dynamically adapt to different temperatures, and achieve a low temperature sensitivity of 34 ppm/°C over the range from -40°C to 120 °C.","PeriodicalId":138665,"journal":{"name":"2014 IEEE Dallas Circuits and Systems Conference (DCAS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A low-voltage and temperature compensated ring VCO design\",\"authors\":\"Guoying Wu, Kexu Sun, Shita Guo, Tao Zhang, Tianzuo Xi, Rui Wang, P. Gui\",\"doi\":\"10.1109/DCAS.2014.6965321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low-voltage, two-stage ring voltage-controlled oscillator (VCO) which can tolerate temperature variation is presented in this paper. Designed using a 0.13 μm CMOS technology, this VCO is capable of operating at 1-V power supply voltage not only for low power consumption, but also to reduce hot-carrier effects and improve reliability and lifetime. It incorporates coarse and fine frequency tuning mainly for tolerance of process variations while achieving small control-voltage-to-frequency gain and enough tuning range of the VCO. Most importantly, a new temperature compensation technique which is suitable for low power supply voltage design is proposed to enable continuous operation of the VCO in variable ambient temperatures environment. Simulations show that with the proposed techniques, the VCO can tolerate process variations, dynamically adapt to different temperatures, and achieve a low temperature sensitivity of 34 ppm/°C over the range from -40°C to 120 °C.\",\"PeriodicalId\":138665,\"journal\":{\"name\":\"2014 IEEE Dallas Circuits and Systems Conference (DCAS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Dallas Circuits and Systems Conference (DCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCAS.2014.6965321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Dallas Circuits and Systems Conference (DCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCAS.2014.6965321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种能承受温度变化的低压两级环控振荡器(VCO)。该VCO采用0.13 μm CMOS技术设计,能够在1 v电源电压下工作,不仅功耗低,而且还可以减少热载子效应,提高可靠性和寿命。它结合了粗和细频率调谐,主要是为了容忍过程变化,同时实现小的控制电压频率增益和足够的VCO调谐范围。最重要的是,提出了一种适用于低电源电压设计的新型温度补偿技术,使压控振荡器能够在变温度环境下连续工作。仿真结果表明,采用所提出的技术,VCO可以承受工艺变化,动态适应不同的温度,并在-40°C至120°C的范围内实现34 ppm/°C的低温灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A low-voltage and temperature compensated ring VCO design
A low-voltage, two-stage ring voltage-controlled oscillator (VCO) which can tolerate temperature variation is presented in this paper. Designed using a 0.13 μm CMOS technology, this VCO is capable of operating at 1-V power supply voltage not only for low power consumption, but also to reduce hot-carrier effects and improve reliability and lifetime. It incorporates coarse and fine frequency tuning mainly for tolerance of process variations while achieving small control-voltage-to-frequency gain and enough tuning range of the VCO. Most importantly, a new temperature compensation technique which is suitable for low power supply voltage design is proposed to enable continuous operation of the VCO in variable ambient temperatures environment. Simulations show that with the proposed techniques, the VCO can tolerate process variations, dynamically adapt to different temperatures, and achieve a low temperature sensitivity of 34 ppm/°C over the range from -40°C to 120 °C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信