基于Apache Spark的变压器区域负荷预测研究

Qi Hui, Tang Haibo, Feng Wei, Wen Beibei, Wu Qian
{"title":"基于Apache Spark的变压器区域负荷预测研究","authors":"Qi Hui, Tang Haibo, Feng Wei, Wen Beibei, Wu Qian","doi":"10.1109/CICED.2018.8592094","DOIUrl":null,"url":null,"abstract":"The massive data accumulated by the power company provides the basic data profile for load forecasting. In this paper, a dynamic Bayesian network is built as a load forecasting model of transformer areas. The parallel computing platform Apache Spark is used to calculate the parameters of the model based on large volume of transformers' historical data in parallel. Meanwhile, the Pregel computing model is used to parallelize the forward backward algorithm to realize the forecasting tasks. The experimental results show that the proposed transformer areas load forecasting technology based on distributed graph computing has high prediction accuracy and fast calculation speed.","PeriodicalId":142885,"journal":{"name":"2018 China International Conference on Electricity Distribution (CICED)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on Apache Spark Based Transformer Areas Load Forecasting\",\"authors\":\"Qi Hui, Tang Haibo, Feng Wei, Wen Beibei, Wu Qian\",\"doi\":\"10.1109/CICED.2018.8592094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The massive data accumulated by the power company provides the basic data profile for load forecasting. In this paper, a dynamic Bayesian network is built as a load forecasting model of transformer areas. The parallel computing platform Apache Spark is used to calculate the parameters of the model based on large volume of transformers' historical data in parallel. Meanwhile, the Pregel computing model is used to parallelize the forward backward algorithm to realize the forecasting tasks. The experimental results show that the proposed transformer areas load forecasting technology based on distributed graph computing has high prediction accuracy and fast calculation speed.\",\"PeriodicalId\":142885,\"journal\":{\"name\":\"2018 China International Conference on Electricity Distribution (CICED)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 China International Conference on Electricity Distribution (CICED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICED.2018.8592094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 China International Conference on Electricity Distribution (CICED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICED.2018.8592094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

电力公司积累的海量数据为负荷预测提供了基础数据轮廓。本文建立了一个动态贝叶斯网络作为变压器区负荷预测模型。基于大量变压器历史数据,采用并行计算平台Apache Spark对模型参数进行并行计算。同时,利用Pregel计算模型对前向后向算法进行并行化,实现预测任务。实验结果表明,本文提出的基于分布式图计算的变压器区域负荷预测技术具有预测精度高、计算速度快的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Apache Spark Based Transformer Areas Load Forecasting
The massive data accumulated by the power company provides the basic data profile for load forecasting. In this paper, a dynamic Bayesian network is built as a load forecasting model of transformer areas. The parallel computing platform Apache Spark is used to calculate the parameters of the model based on large volume of transformers' historical data in parallel. Meanwhile, the Pregel computing model is used to parallelize the forward backward algorithm to realize the forecasting tasks. The experimental results show that the proposed transformer areas load forecasting technology based on distributed graph computing has high prediction accuracy and fast calculation speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信