使用单网络自适应批评的四轴飞行器控制

A. Velázquez, Lei Xu, Tohid Sardarmehni
{"title":"使用单网络自适应批评的四轴飞行器控制","authors":"A. Velázquez, Lei Xu, Tohid Sardarmehni","doi":"10.1115/imece2022-96834","DOIUrl":null,"url":null,"abstract":"\n In this paper, optimal tracking control is found for an input-affine nonlinear quadcopter using Single Network Adaptive Critics (SNAC). The quadcopter dynamics consists of twelve states and four controls. The states are defined using two related reference frames: the earth frame, which describes the position and angles, and the body frame, which describes the linear and angular velocities. The quadcopter has six outputs and four controls, so it is an underactuated nonlinear system. The optimal control for the system is derived by solving a discrete-time recursive Hamilton-Jacobi-Bellman equation using a linear in-parameter neural network. The neural network is trained to find a mapping between a target costate vector and the current states. The network’s weights are iteratively trained using the least-squares approximation method until the maximum number of iterations or convergence is reached, and training begins at the final time and proceeds backward to the initial time. The trained neural controller applies online optimal feedback control that tracks a trajectory, minimizes control effort, and satisfies the optimality condition. The SNAC method provides a controller that can handle all initial conditions within the domain of training and all times less than the training’s final time.","PeriodicalId":302047,"journal":{"name":"Volume 5: Dynamics, Vibration, and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quadcopter Control Using Single Network Adaptive Critics\",\"authors\":\"A. Velázquez, Lei Xu, Tohid Sardarmehni\",\"doi\":\"10.1115/imece2022-96834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, optimal tracking control is found for an input-affine nonlinear quadcopter using Single Network Adaptive Critics (SNAC). The quadcopter dynamics consists of twelve states and four controls. The states are defined using two related reference frames: the earth frame, which describes the position and angles, and the body frame, which describes the linear and angular velocities. The quadcopter has six outputs and four controls, so it is an underactuated nonlinear system. The optimal control for the system is derived by solving a discrete-time recursive Hamilton-Jacobi-Bellman equation using a linear in-parameter neural network. The neural network is trained to find a mapping between a target costate vector and the current states. The network’s weights are iteratively trained using the least-squares approximation method until the maximum number of iterations or convergence is reached, and training begins at the final time and proceeds backward to the initial time. The trained neural controller applies online optimal feedback control that tracks a trajectory, minimizes control effort, and satisfies the optimality condition. The SNAC method provides a controller that can handle all initial conditions within the domain of training and all times less than the training’s final time.\",\"PeriodicalId\":302047,\"journal\":{\"name\":\"Volume 5: Dynamics, Vibration, and Control\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: Dynamics, Vibration, and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-96834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Dynamics, Vibration, and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-96834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对输入仿射非线性四轴飞行器的最优跟踪控制问题,提出了单网络自适应批评(SNAC)方法。四轴飞行器动力学由十二个状态和四个控制组成。这些状态是用两个相关的参考系来定义的:描述位置和角度的地球参考系和描述线速度和角速度的物体参考系。该四轴飞行器具有6个输出和4个控制,是一个欠驱动非线性系统。利用线性参数内神经网络求解离散时间递归Hamilton-Jacobi-Bellman方程,得到系统的最优控制。神经网络被训练来找到目标状态向量和当前状态之间的映射。使用最小二乘逼近法迭代训练网络的权值,直到达到最大迭代次数或收敛次数,并从最终时间开始训练,向后进行到初始时间。训练后的神经控制器采用在线最优反馈控制,跟踪轨迹,使控制努力最小化,并满足最优条件。SNAC方法提供了一个控制器,该控制器可以处理训练域内的所有初始条件,并且所有时间都小于训练的最终时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quadcopter Control Using Single Network Adaptive Critics
In this paper, optimal tracking control is found for an input-affine nonlinear quadcopter using Single Network Adaptive Critics (SNAC). The quadcopter dynamics consists of twelve states and four controls. The states are defined using two related reference frames: the earth frame, which describes the position and angles, and the body frame, which describes the linear and angular velocities. The quadcopter has six outputs and four controls, so it is an underactuated nonlinear system. The optimal control for the system is derived by solving a discrete-time recursive Hamilton-Jacobi-Bellman equation using a linear in-parameter neural network. The neural network is trained to find a mapping between a target costate vector and the current states. The network’s weights are iteratively trained using the least-squares approximation method until the maximum number of iterations or convergence is reached, and training begins at the final time and proceeds backward to the initial time. The trained neural controller applies online optimal feedback control that tracks a trajectory, minimizes control effort, and satisfies the optimality condition. The SNAC method provides a controller that can handle all initial conditions within the domain of training and all times less than the training’s final time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信